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ABSTRACT 

Analog-To-Digital Converters (ADCs) are integral building blocks of most sensor and 

communication systems today. As the need for ADCs with faster conversion speeds and 

lower power dissipation increases, there is a growing motivation to reduce the number of 

power-consuming components by employing folding circuits to fold the input analog 

signal symmetrically prior to quantization by high-speed comparators. These properties 

of low-power consumption, compactness, high-resolution and fast conversion speeds 

make folding ADCs an attractive concept to be used for defense applications, such as 

unmanned systems, direction-finding antenna architectures and system-on-a-chip 

applications. 

 In this thesis, a prototype of an optical folding ADC was implemented using the 

Robust Symmetrical Number System (RSNS). The architecture employs a three-modulus 

(Moduli 7, 8, 9) scheme to preprocess the antenna signal. 

This thesis focuses on the simulation and hardware implementation of this ADC 

architecture, including the bank of comparators and the RSNS-to-Binary Conversion 

within a Field Programmable Gate Array (FPGA), to achieve an eight-bit dynamic range 

of 133. This is then integrated with the front-end photonics implementation (designed 

under a separate thesis). 

Low frequency analyses of the results using a 1-kHz input signal indicate a 5.39 

Effective Number of Bits (ENOB), a Signal-to-Noise Ratio plus Distortion (SINAD) of 

34.21 dB, and a Total Harmonic Distortion (THD) of -61.68 dB. 
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EXECUTIVE SUMMARY 

Analog-To-Digital Converters (ADCs) are integral building blocks of most sensor and 

communication systems today. As the need for ADCs with faster conversion speeds and 

lower power dissipation increases, there is a growing motivation to reduce the number of 

power-consuming components by employing folding circuits to fold the input analog 

signal symmetrically prior to quantization by high-speed comparators. The folding of the 

analog signal allows comparators to be repetitively used, resulting in a smaller die area 

and lower power consumption. 

These properties of low-power consumption, compactness, high-resolution and 

fast conversion speeds make folding ADCs an attractive concept to be used for defense 

applications that involve power and size constraints as key factors in the design of 

battlefield systems and sensors. 

In this thesis, a prototype of an optical folding ADC was implemented using the 

Robust Symmetrical Number System (RSNS), which minimizes the number of 

comparators and removes the interpolation circuitry completely. The architecture 

employs a three-modulus (Moduli 7, 8, 9) scheme to preprocess the antenna signal and is 

shown in Figure 1. 

 

Figure 1. Block Diagram of a Three-Channel Folding ADC Architecture. 
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The goal of this thesis is to conduct hardware and software implementation of the 

Digital Decoding Sub-System (DDS) module of the folding ADC architecture (for 

Moduli 7, 8, 9), from the bank of comparators to the RSNS-to-binary conversion within 

the Field Programmable Gate Array (FPGA), as well as integration with the front-end 

Photonics Encoding Sub-System (PES) module of this ADC design. This was 

accomplished via several milestones described below. 

Firstly, the RSNS Dynamic Range (DR) Computation algorithm was verified to 

be correct, proving that an eight-bit DR of 133 can be achieved theoretically for a three-

channel RSNS ADC with Moduli m1 = 7, m2 = 8 and m3 = 9. 

Secondly, the RSNS-to-binary conversion algorithm for a three-channel RSNS 

ADC with Moduli m1 = 7, m2 = 8 and m3 = 9 was developed in LabVIEW, shown in 

Figure 2. 

 

Figure 2. LabVIEW Schematics of RSNS-to-Binary Converter. 
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This conversion was done to convert the RSNS output into a more convenient 

decimal representation. This implementation was shown to achieve the DR value of 133 

with no ambiguities, which is in agreement with the RSNS DR Computation algorithm, 

and a one-bit improvement over that achieved in a previous design. Design of 

thermometer code generator circuits and simulation of this algorithm were carried out to 

verify that it is working properly before connecting to actual signals. 

Thirdly, the comparator circuits and RSNS-to-binary conversion algorithm were 

designed and implemented on the FPGA to form the DDS module, shown in Figure 3.  

 

 

Figure 3. DDS Module Setup 

The comparator speed was a limiting factor to the ADC system speed as actual 

comparator ICs were used for sampling outside the FPGA in a previous design. The key 

improvement made to the DDS module setup in Figure 3 is that the comparator circuits 

now reside in the FPGA, allowing them to sample at a rate equal to the FPGA speed. 

 



 xviii

The comparator circuit and RSNS-to-binary conversion logics were also ran on 

the FPGA to guarantee a higher FPGA execution speed, as opposed to running it on a 

National Instruments Real-Time Controller module with a lower processing speed. These 

two factors allow the ADC to achieve an overall higher sampling frequency. 

Lastly, the DDS module was integrated with the front-end PES module to form a 

folding ADC system and characterization of the ADC performance was carried out. 

Analysis of the results attributed the dominant noise source in the ADC system to 

quantization noise, with the ADC remaining resilient to errors caused by other additive 

noise sources and comparator sampling. 

This electro-optic RSNS ADC system has been demonstrated to work and 

produces an eight-bit output with relatively simple hardware and software. Due to the 

reduced number of hardware and software components, the energy and size savings make 

this folding ADC design appealing for defense applications, such as unmanned systems, 

direction-finding antenna architectures and electronic warfare system-on-a-chip 

applications. 
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I. INTRODUCTION  

A. FOLDING-TYPE ANALOG-TO-DIGITAL CONVERTERS  

Analog-To-Digital Converters (ADCs) are integral building blocks of most sensor 

and communication systems today. They allow analog data measured in the real world to 

be sampled and converted into quantized levels for high-speed digital processing. 

As the need for ADCs with faster conversion speeds and lower power dissipation 

increases, there is a growing motivation to reduce the number of power-consuming 

components by employing folding circuits to fold the input analog signal symmetrically, 

prior to quantization by high-speed comparators. [1] 

The folding of the analog signal allows comparators to be repetitively used, 

resulting in a smaller die area and lower power consumption. One folding technique 

employed is the Robust Symmetrical Number System (RSNS), which minimizes the 

number of comparators and removes the interpolation circuitry completely. [1] 

 These properties of low-power consumption, compactness, high-resolution and 

fast conversion speeds make folding ADCs an attractive concept to be used for defense 

applications, such as unmanned systems, direction-finding antenna architectures and 

electronic warfare system-on-a-chip applications. 

B. SUMMARY OF RECENT RESEARCH 

It was demonstrated in [2] that a three-channel folding ADC of Moduli 3, 4 and 5 

can be designed using an efficient pipelined RSNS-to-binary algorithm to produce a six-

bit Dynamic Range (DR) of 43 while utilizing significantly less electronic components 

than other equivalent six-bit ADC architecture designs. The implementation of this ADC 

architecture was verified to have the same DR in [3], shown in Figure 1. 
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Figure 1.   Block Diagram of a Three-Channel Folding ADC Architecture (After [3]). 

In [4], it was demonstrated that the same algorithm can be extended and applied 

to a folding ADC of higher moduli (Moduli 7, 8 and 9). A seven-bit DR of 126 was 

achieved in [4], but the full DR of 133 could not be achieved due to ambiguities in the 

ADC output. The next step is to solve for the ambiguities and carry out an 

implementation of this ADC design. 

This thesis is done in conjunction with another Master’s thesis to implement a 

three-channel electro-optical folding ADC architecture (for Moduli 7, 8, 9) [5]. It focuses 

on the implementation of the Digital Decoding Sub-System (DDS), which involves the 

hardware and software implementation of the bank of comparators to the RSNS-to-binary 

conversion within a Field Programmable Gate Array (FPGA), to achieve an eight-bit DR 

of 133. 
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This is done using a novel solution to solve for the ambiguities in the ADC output. The 

DDS module is then integrated with the front-end Photonics Encoding Sub-System 

(PES), which is detailed in [5]. 

C. PRINCIPAL CONTRIBUTIONS  

Given the works summarized in the previous section, the principal contributions 

of the research in this thesis are three-fold. 

Firstly, this thesis provides a derivation of the theoretical DR and its start and end 

positions for a folding ADC of Moduli 7, 8 and 9. This is based on the RSNS dynamic 

range computation algorithm in [6] and [7] and is used as a yardstick comparison to 

verify with actual experimental values obtained. 

The second contribution is the implementation of the RSNS-to-binary algorithm 

in LabVIEW to achieve an eight-bit DR of 133, which is a one-bit improvement over that 

achieved in [4]. Simulation of this algorithm is carried out to verify that it is working 

properly before connecting to actual signals. This is done by designing test circuits to 

produce the three-channel thermometer codes, which are then supplied to the algorithm to 

obtain the simulated DR and its position. 

Thirdly, this thesis documents the DDS implementation of the comparator circuit 

design and RSNS-to-binary conversion algorithm onboard a National Instruments (NI) 

FPGA so as to achieve a higher sampling frequency. The comparator circuit is redesigned 

in LabVIEW to allow it to achieve a higher speed to match that of the FPGA, as opposed 

to using actual comparator Integrated Circuits (ICs) as in [3]. The DDS module is then 

integrated with the front-end PES module in [5] to form an overall folding ADC 

architecture and tested. Lastly, an analysis and characterization of the ADC performance 

is carried out. 

D. THESIS OUTLINE 

Having covered the recent research efforts for a folding ADC architecture, we 

will provide the reader with a summary of the RSNS structure and principles behind the 

RSNS-to-binary conversion algorithm in Chapter II. A good understanding of these two 
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areas is required in order to translate these into actual hardware and software 

implementation. A theoretical derivation of the DR and its start and end positions for a 

folding ADC of Moduli 7, 8 and 9, based on the RSNS dynamic range computation 

algorithm in [6] and [7] is also provided in Chapter II. 

All the logic blocks and their equivalent Boolean equations required to form the 

RSNS-to-binary converter for an ADC of Moduli 7, 8, 9 are delineated in Chapter III. 

The process to convert the Boolean equations in Chapter III into a suitable form 

for implementation in LabVIEW is outlined in Chapter III. It describes how each logic 

block is designed in LabVIEW and the integration of all logic blocks to form the RSNS-

to-binary converter. 

The simulation and testing of the RSNS-to-binary converter to verify that the 

conversion logic is functioning properly is delineated in Chapter V. The first section of 

this chapter describes the creation of thermometer codes for each channel in LabVIEW to 

simulate as inputs to the conversion algorithm. The second section highlights the key 

simulation results obtained for various models. 

The process of implementing the comparator circuit design and RSNS-to-binary 

conversion algorithm on a NI FPGA module is detailed in Chapter VI. It also highlights 

the integration of the DDS module with the front-end PES module in [5] to form an 

overall folding ADC architecture are also highlighted. 

An analysis of the results to characterize the performance of this ADC system is 

provided in Chapter VII. 

The key conclusions obtained from this project and recommendations for future 

research are given in Chapter VIII. 
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II. ROBUST SYMMETRICAL NUMBER SYSTEM 

The basic theory and structure of the RSNS, and how its properties are used in the 

implementation of the RSNS-to-binary converter, is explained in this chapter. 

Equation Section (Next) 

A. RSNS STRUCTURE 

A single-channel RSNS is based on the following staircase sequence [1]: 

[0,1, 2,... 1, , 1,..., 2,1]h i i iX m m m    Equation Section (Next)  (1) 

This sequence starts from zero and increases to a peak value mi, which is the channel 

modulus. It then decreases back to zero and repeats itself, forming a periodic sequence 

with a period of 2mi. 

A three-channel RSNS vector is denoted as:  

1

2

3

h

s

X s

s

 
   
  

,     (2) 

where the RSNS residues are in the range  

 
 
 

1 1

2 2

3 3

0, 1, , ,

0, 1, , ,

0, 1, , .

s m

s m

s m













    (3) 

For an N-channel RSNS, each number in the sequence is repeated N times, 

extending the sequence period to 2Nmi. Each RSNS channel modulus is required to be 

pair-wise relatively prime (PRP) to all other channel moduli [1]. 

The three-channel RSNS case (N = 3), with channel moduli m1 = 7, m2 = 8 and m3 

= 9, which meets the PRP condition, is focused on in this thesis. Each channel period is 

of length 2Nmi. The first 49 RSNS vectors of the three-channel RSNS structure for the 

moduli [7  8 9]im  are shown in Figure 2 as an illustration. 
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(m 1 = 7) 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 6

(m 2 = 8) 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8

(m 3 = 9) 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

(m 1 = 7) 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 0 1 1 1 2 …

(m 2 = 8) 8 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1 0 0 …

(m 3 = 9) 9 9 9 8 8 8 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 …

h 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 …

X h

X h

 

Figure 2.   Three-Channel RSNS for Moduli [7  8 9]im  . 

A plot of the folded RSNS waveforms for the three channels in Figure 2, as well 

as the relative left-shift for Channels 2 and 3, is shown in Figure 3. Notice that these 

relative shifts are required for the system to exhibit Gray-code properties, where the 

residues within consecutive RSNS vectors change one at a time at the next code position. 

This property makes it attractive for error control [1]. 

 

Figure 3.   Folded RSNS Waveforms for Moduli [7  8 9]im  . 
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The fundamental period of a three-channel RSNS is [1]: 

1 2 32 2f iP N m Nm m m      (4) 

This is calculated to be      2 3 7 8 9 3024fP    for a RSNS with [7  8 9]im  . 

1. Dynamic Range 

The maximum DR of the RSNS is defined as the longest series of consecutive 

unambiguous RSNS vectors within the fundamental period of the system [1]. The DR for 

the same RSNS system is given by [1]: 

� 2
1 1

3 15
7.

2 2
M m m       (5) 

This is calculated as �    23 15
7 7 7 133

2 2
M     . 

It was shown that the size of the DR in a RSNS is the same regardless of the shift 

sequence and whether the shift is to the left or right. However, the location of the DR is 

affected by the choice of the channels that receive the shifts [1]. 

Since the aim is to achieve an eight-bit DR for this design regardless of its 

location, a left-shift [0 1 2]it  system is chosen for ease of implementation as the 

RSNS-to-binary conversion algorithm is derived based on this shift system in [2], with 

Channel 2 and 3 shifted one and two positions to the left, respectively, both relative to 

Channel 1. 

2. Ambiguity Types 

The conventional approach towards finding the DR and its position is to search 

the entire fundamental period for a sequence of non-repeating or unambiguous vectors of 

unknown length, which is computationally-intensive. A more efficient approach is to 

compute the finite locations of the ambiguous RSNS vectors for each channel and solve 

for all vector ambiguity locations to obtain the DR and its position [2], which will be 

elaborated in Section B of this chapter. 
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Three types of ambiguities exist in each RSNS channel [2]. The positions of the 

three ambiguity types for the Channel 1 (m1 = 7) case are illustrated in Figure 4. Type 0 

ambiguities occur for every repeating channel period, while Type 1 ambiguities occur on 

the rise and fall of a channel period. In addition, Type 2 ambiguities occur every time 

each residue value is repeated three times within the period. 

 

Figure 4.   Single Channel Ambiguity Types (m1 = 7). 

3. Sub-Channel Analysis 

It was shown in [2] that decimating each of the three channels into their sub-

channels aids in the solving of channel ambiguities. This is illustrated for 

the [7  8 9]im  case in Figure 5. 

Grouping each of the sub-channels together, and re-indexing the position index h to 

a new index g, we obtain the results in Figure 6. The relationship between the old 

position index h and the new index g is given by [2]: 

 

 

         (Sub-Channel 0)
3

1
 (Sub-Channel 1)

3
2

(Sub-Channel 2)
3

h
g

h
g

h
g









    (6) 
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m 1=7 X h 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

Sub-Channel 0 0 1 2 3 4 5

Sub-Channel 1 0 1 2 3 4 5

Sub-Channel 2 0 1 2 3 4 5
Position Index h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 2=8 X h 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6

Sub-Channel 0 0 1 2 3 4 5
Sub-Channel 1 0 1 2 3 4 5
Sub-Channel 2 1 2 3 4 5 6
Position Index h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 3=9 X h 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6

Sub-Channel 0 0 1 2 3 4 5
Sub-Channel 1 1 2 3 4 5 6
Sub-Channel 2 1 2 3 4 5 6
Position Index h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  

 

Figure 5.   Decimation of Channels into Sub-Channels for Moduli [7  8 9]im  . 

m 1=7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 1 2 3

m 2=8 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1

m 3=9 0 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

h 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
g = h /3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 1=7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 1 2 3

m 2=8 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1

m 3=9 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 0

h 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
g  = (h -1)/3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 1=7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 1 2 3

m 2=8 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1 2

m 3=9 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1 0

h 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53
g  = (h -2)/3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Position Index

Sub-Channel 0

Sub-Channel 1

Sub-Channel 2

X h

X h

X h

Position Index

Position Index

 

Figure 6.   RSNS Vectors for Sub-Channels 0, 1 and 2. 
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A plot of the RSNS sub-channel waveforms in Figure 6 is shown in Figure 7. 

Each channel has N = 3 sub-channels. From Figure 7, it can be seen that Type 2 

ambiguities are eliminated, leaving only Type 0 and 1 ambiguities. 

 

Figure 7.   Plot of Sub-Channels 0, 1 and 2. 

As the waveforms are folded and symmetric, each residue value occurs twice in a 

single folding period, except for the minimum and the maximum value, which occur only 

once. Using this fact, we obtain the congruence equations describing the position of a 

RSNS residue vector for Sub-Channel 0 as [2]: 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

(mod  2 ) or 2  (mod  2 ),

(mod  2 ) or 2  (mod  2 ),

(mod  2 ) or 2  (mod  2 ).

g s m g m s m

g s m g m s m

g s m g m s m

  
  
  

   (7) 
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The congruence equations for Sub-Channel 1 are: 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

(mod  2 ) or 2  (mod  2 ),

(mod  2 ) or 2  (mod  2 ),

1 (mod  2 ) or 2 1 (mod  2 ).

g s m g m s m

g s m g m s m

g s m g m s m

  
  
    

  (8) 

The congruence equations for Sub-Channel 2 are: 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

(mod  2 ) or 2  (mod  2 ),

1 (mod  2 ) or 2 1 (mod  2 ),

1 (mod  2 ) or 2 1 (mod  2 ).

g s m g m s m

g s m g m s m

g s m g m s m

  
    
    

  (9) 

Equations (7)–(9) show that there are three equations for each sub-channel, with 

two choices for each equation. Thus, each RSNS residue vector can produce up to 23 or 

eight unique systems of equations. This means that any RSNS vector can have up to eight 

ambiguities within the fundamental period. 

The equations also reveal that the start position of the DR, h, can be found by 

determining the sub-channel of a particular RSNS vector, solving the equivalent set of 

equations to obtain g, and converting g to find h, using (6). To determine which sub-

channel a RSNS vector is from, the even-odd structure of each sub-channel has to be 

investigated. 

4. Even-Odd Analysis 

The even-odd structures (e = even, o = odd) of each sub-channel, and the overall 

even-odd structure of a three-channel RSNS with [7  8 9]im  , are illustrated in Figures 

8 and 9. 

From Figure 8, it can be seen that each sub-channel produces RSNS vectors with 

two unique even-odd structures. Thus, the Sub-Channel 0 equations in (7) can be applied 

if the RSNS vector is found to be of form  Te e e or  To o o . Similarly, the Sub-Channel 

1 equations in (8) are used if the RSNS vector is of form  Te e o or  To o e , and the Sub-

Channel 2 equations in (9) are applied if the RSNS vector is of form  Te o o or  To e e . 
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m 1=7 e o e o e o e o e o e o e o e o e o

m 2=8 e o e o e o e o e o e o e o e o e o

m 3=9 e o e o e o e o e o e o e o e o e o

h 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
g = h/3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 1=7 e o e o e o e o e o e o e o e o e o

m 2=8 e o e o e o e o e o e o e o e o e o

m 3=9 o e o e o e o e o e o e o e o e o e

h 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52
g  = (h -1)/3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

m 1=7 e o e o e o e o e o e o e o e o e o

m 2=8 o e o e o e o e o e o e o e o e o e

m 3=9 o e o e o e o e o e o e o e o e o e

h 2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53
g  = (h -2)/3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sub-Channel 0

Sub-Channel 1

Sub-Channel 2

 

Figure 8.   Even-Odd Structure of RSNS Vectors for Sub-Channels 0, 1 and 2.  

This even-odd structure repeats in blocks of six, after cycling through the set of 

sub-channels twice, as shown in Figure 9. This means that the minimum distance 

between ambiguous parity vectors is always a multiple of six for a three-channel RSNS, 

and a multiple of 2N for the N-channel case. 

 
Sub-Channel 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

m 1=7 e e e o o o e e e o o o e e e o o o

m 2=8 e e o o o e e e o o o e e e o o o e

m 3=9 e o o o e e e o o o e e e o o o e e

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17  

Figure 9.   Overall Even-Odd Structure of RSNS Vectors. 

 It was shown in [2] that for the Sub-Channel 1 and 2 cases, the equations in (6) 

and (7) actually convert the even-odd structure of the RSNS vectors to the form  Te e e or 

 To o o . Thus, the Sub-Channel 0 case can be exploited as a base case to develop an 

efficient RSNS-binary conversion, explained in Section C of this chapter. 
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B. RSNS DYNAMIC RANGE SEARCH ALGORITHM 

 An efficient RSNS dynamic range search algorithm was developed in [6] and [7], 

which makes use of the cyclical and symmetrical properties of the RSNS structure to cut 

down on the solution space when searching for the DR. This is faster than searching 

through the whole solution space, which is computationally intensive. A theoretical 

derivation of the DR, including its start and end positions, for a folding ADC of Moduli 

7, 8 and 9, based on this algorithm, is provided in this section. 

1. Dynamic Range Upper Bound 

The upper limit of �M  is defined as [6]: 

ˆ min 2 1i j
i j i j

M N m m
   

 
         

      (10) 

The DR upper bound for an ADC of Moduli 7, 8 and 9 is calculated to be 221: 

 

 

 

 

   

   

   

   

1

2

3

4

5

6

7

8

ˆ 3 1 2 7 8 9 1 3026

ˆ 3 7 2 8 9 1 452

ˆ 3 8 2 7 9 1 401

ˆ 3 9 2 7 8 1 362

ˆ 3 7 8 2 9 1 221

ˆ 3 7 9 2 8 1 236

ˆ 3 8 9 2 7 1 257

ˆ 3 7 8 9 2 1

M

M

M

M

M

M

M

M

          

         

         

         

         

         

         

          1 1517

ˆ ˆmin 221
i

M M



        

    (11) 

2. RSNS Vector Ambiguity Locations 

The solutions to the RSNS vector ambiguity locations for a three-channel case are 

shown in Figure 10. Note that all of the ambiguities smaller than the fundamental period 

are symmetric around a Center of Ambiguity (COA), as intuitively shown in Figure 4 [6]. 
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The three identifier digits in the Case Label refer to the number of Type 1 

ambiguities, combination number and sub-channel number respectively. They are used to 

provide a logical case numbering system for implementation in a computer algorithm [2]. 

 

Case 
Label

Ambiguities occur at h  and h+k , where 
h  is

k  is a 
multiple 

of 
COR

010 Any position in the fundamental period 6m 1m 2m 3 N/A

110 h  = a (3m 1) - k /2 a (3m 1)

111 h  = a (3m 1) + 1 - k /2 a (3m 1) + 1

112 h  = a (3m 1) + 2 - k /2 a (3m 1) + 2

120 h  = a (3m 2) - k /2 a (3m 2)

121 h  = a (3m 2) + 1 - k /2 a (3m 2) + 1

122 h  = a (3m 2) - 1 - k /2 a (3m 2) - 1

130 h  = a (3m 3) - k /2 a (3m 3)

131 h  = a (3m 3) - 2 - k /2 a (3m 3) - 2

132 h  = a (3m 3) - 1 - k /2 a (3m 3) - 1

210 h  = a (3m 1m2) - k /2 a (3m 1m2)

211 h  = a (3m 1m 2) + h s1 - k /2 a (3m 1m 2) + h s1

212 h  = a (3m 1m 2) + h s2 - k /2 a (3m 1m 2) + h s2

220 h  = a (3m 1m 3) - k /2 a (3m 1m 3)

221 h  = a (3m 1m 3) + h s1 - k /2 a (3m 1m 3) + h s1

222 h  = a (3m 1m 3) + h s2 - k /2 a (3m 1m 3) + h s2

230 h  = a (3m 2m 3) - k /2 a (3m 2m 3)

231 h  = a (3m 2m 3) + h s1 - k /2 a (3m 2m 3) + h s1

232 h  = a (3m 2m 3) + h s2 - k /2 a (3m 2m 3) + h s2

310 h  = a (3m1m 2m 3) - k /2 a (3m1m 2m 3)

311 h  = a (3m 1m 2m 3) + h s1 - k /2 a (3m 1m 2m 3) + h s1

312 h  = a (3m 1m 2m 3) + h s2 - k /2 a (3m 1m 2m 3) + h s2

6m 2

6m 1

6

6m 2m 3

6m 1m 3

6m 1m 2

6m 3

 

Figure 10.   RSNS Vector Ambiguity Locations (Three-Channel Case). 

From Figure 10, it can be seen that the ambiguities in an RSNS structure occur at 

position h and h + k, where k is a multiple of the moduli combinations for each case. 

There is an inverse relation between the spacing between the ambiguous vectors (k) and 

the spacing between the COA. 
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Recall that a left-shift [0 1 2]ishift   system was implemented to exhibit gray-

code properties. Thus, the base cases involving Sub-Channel 0 (Case XX0) has a COA 

shift of 0 0sh  . The cases involving Sub-Channel 1 (Case XX1) and Sub-Channel 2 

(Case XX2) will have a COA shifts of 1sh  and 2sh , respectively. These are the least 

positive solutions to the following two sets of congruence equations [7]: 

 

1 2

1 2

1 2

1 2
0 (mod  7)       0 (mod  7)

3 3
1 1

0 (mod  8)       0 (mod  8)
3 3

2 1
0 (mod  9)       0 (mod  9)

3 3

s s

s s

s s

h h

h h

h h

 
 

 
 

 
 

   (12) 

 

 The COA shifts are computed to be 1 1sh   and 2 23sh   using the generalized 

Chinese Remainder Theorem (CRT) procedure described in the Appendix. 

 

The solutions to the RSNS vector ambiguity locations for a RSNS with Moduli 7, 

8 and 9, are derived from Figure 10 and summarized in Figure 11. The rows highlighted 

in grey have ambiguity pairs with a length greater than � 221M     and can be ignored in 

the DR computation. 



 16

Case 
Label

Ambiguities occur at h  and h+k , where 
h  is

k  is a 
multiple 

of 
COA

010 Any position in the fundamental period 3024 N/A

110 h  = a (21) - 216 a (21)

111 h  = a (21) - 215 a (21) + 1

112 h  = a (21) - 214 a (21) + 2

120 h  = a (24) - 189 a (24)

121 h  = a (24) - 188 a (24) + 1

122 h  = a (24) - 190 a (24) - 1

130 h  = a (27) - 168 a (27)

131 h  = a (27) - 170 a (27) - 2

132 h  = a (27) - 169 a (27) - 1

210 h  = a (168) - 27 a (168)

211 h  = a (168) + h s1 - 27 a (168) + h s1

212 h  = a (168) + h s2 - 27 a (168) + h s2

220 h  = a (189) - 24 a (189)

221 h  = a (189) + h s1 - 24 a (189) + h s1

222 h  = a (189) + h s2 - 24 a (189) + h s2

230 h  = a (216) - 21 a (216)

231 h  = a (216) + h s1 - 21 a (216) + h s1

232 h  = a (216) + h s2 - 21 a (216) + h s2

310 h  = a (1512) - 3 a (1512)

311 h  = a (1512) + h s1 - 3 a (1512) + h s1

312 h  = a (1512) + h s2 - 3 a (1512) + h s2

48

42

6

432

378

336

54

 

Figure 11.   RSNS Vector Ambiguity Locations (for Moduli 7, 8 and 9). 

3. Minimal Ambiguity Pair Locations 

Due to the symmetry of the RSNS vector ambiguity locations about / 2fP , only 

ambiguity pairs from   to / 2fh N P N    need to be considered when computing �M  

[7]. All the minimal ambiguity pair  1 2,h h  locations, derived by substituting integer 

values of a , 1 1sh   and 2 23sh   into Figure 11 for each of the cases, are shown in Figure 

12, for 3 to 1515h   . 
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h 1 COA h 2 Case h 1 COA h 2 Case

‐3 0 3 310 670 673 676 311

‐26 1 28 211 732 756 780 220

‐4 23 50 212 860 863 866 312

4 25 46 231 868 889 910 231

82 106 130 221 921 945 969 220

83 107 131 222 981 1008 1035 210

141 168 195 210 982 1009 1036 211

142 169 196 211 1004 1031 1058 212

165 189 213 220 1027 1051 1075 221

194 215 236 232 1028 1052 1076 222

195 216 237 230 1058 1079 1100 232

220 241 262 231 1059 1080 1101 230

271 295 319 221 1084 1105 1126 231

272 296 320 222 1110 1134 1158 220

309 336 363 210 1149 1176 1203 210

310 337 364 211 1150 1177 1204 211

332 359 386 212 1172 1199 1226 212

354 378 402 220 1216 1240 1264 221

410 431 452 232 1217 1241 1265 222

411 432 453 230 1274 1295 1316 232

436 457 478 231 1275 1296 1317 230

460 484 508 221 1300 1321 1342 231

461 485 509 222 1317 1344 1371 210

477 504 531 210 1318 1345 1372 211

478 505 532 211 1340 1367 1394 212

500 527 554 212 1405 1429 1453 221

543 567 591 220 1406 1430 1454 222

626 647 668 232 1509 1512 1515 310

627 648 669 230  

Figure 12.   Minimal Pair Locations. 

4. Consecutive Minimal Pair Locations 

In Figure 12, all minimal pairs with a starting position 1h  earlier than the starting 

position of the previous pair are removed. The remaining minimal pairs are sorted such 

that 2h  is monotonically increasing and are defined as consecutive minimal pairs [7]. 

These consecutive minimal pairs are derived from Figure 12 and shown in Figure 13. 
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h 1 COA h 2 Case

Distance 
Between 

Consecutive 
Minimal Pairs

h 1 COA h 2 Case

Distance 
Between 

Consecutive 
Minimal Pairs

‐3 0 3 310 N.A. 732 756 780 220 109

4 25 46 231 48 860 863 866 312 133

82 106 130 221 125 868 889 910 231 49

83 107 131 222 48 921 945 969 220 100

141 168 195 210 111 981 1008 1035 210 113

142 169 196 211 54 982 1009 1036 211 54

165 189 213 220 70 1004 1031 1058 212 75

194 215 236 232 70 1027 1051 1075 221 70

195 216 237 230 42 1028 1052 1076 222 48

220 241 262 231 66 1058 1079 1100 232 71

271 295 319 221 98 1059 1080 1101 230 42

272 296 320 222 48 1084 1105 1126 231 66

309 336 363 210 90 1110 1134 1158 220 73

310 337 364 211 54 1149 1176 1203 210 92

332 359 386 212 75 1150 1177 1204 211 54

354 378 402 220 69 1172 1199 1226 212 75

410 431 452 232 97 1216 1240 1264 221 91

411 432 453 230 42 1217 1241 1265 222 48

436 457 478 231 66 1274 1295 1316 232 98

460 484 508 221 71 1275 1296 1317 230 42

461 485 509 222 48 1300 1321 1342 231 66

477 504 531 210 69 1317 1344 1371 210 70

478 505 532 211 54 1318 1345 1372 211 54

500 527 554 212 75 1340 1367 1394 212 75

543 567 591 220 90 1405 1429 1453 221 112

626 647 668 232 124 1406 1430 1454 222 48

627 648 669 230 42 1509 1512 1515 310 108

670 673 676 311 48  

Figure 13.   Consecutive Minimal Pair Locations. 

The DR �M  is the largest distance between endpoints of two consecutive minimal 

pairs, computed in Figure 13. The result is a � 133M   starting at 1 1 733h h    and 

ending at 2 1 865h h   , which is in agreement with (5). 
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C. RSNS-TO-BINARY CONVERSION ALGORITHM 

With a good understanding of the underlying RSNS structure, an efficient RSNS-

to-binary conversion can be achieved by exploiting the relationship between the RSNS 

and the Residue Number System (RNS) and using the RNS Least Positive Solution (LPS) 

and positional alignment techniques to solve for the DR position. These are summarized 

in this section. 

1. RSNS-RNS Relationship 

It was shown in [2] that there is a one-to-one correspondence between the RSNS 

and the RNS. This is the key to achieving an efficient RSNS-to-binary conversion as the 

RNS has no ambiguities in a fundamental period, unlike the RSNS. 

This one-to-one correspondence between the RSNS and RNS vectors, using the 

Sub-Channel 0 case as a base case for conversion, is demonstrated in Figure 14. Each 

RSNS residue is converted to a unique RNS residue such that there is no ambiguity 

within a single channel period. 

 

RSNS m1=7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 1 2 3

Vectors m2=8 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0 1

X g m3=9 0 1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1

RNS m1=7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3

Vectors m2=8 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

XR g m3=9 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sub-Channel 0

 

Figure 14.   One-to-One Correspondence between RSNS and RNS Vectors. 

Another useful RNS property is that every XRg vector is either all even or odd, 

unlike the RSNS. 
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It is possible to simplify the conversion by considering only the even XRg vectors 

(grey-colored columns in Figure 14) and dividing their values and the index g by two. 

This is illustrated in Figure 15. 

 

RSNS m 1=7 0 2 4 6 6 4 2 0 2

Vectors m 2=8 0 2 4 6 8 6 4 2 0

X g/2 m 3=9 0 2 4 6 8 8 6 4 2

g 0 2 4 6 8 10 12 14 16

RNS m 1=7 0 1 2 3 4 5 6 0 1

Vectors m 2=8 0 1 2 3 4 5 6 7 0

XR g /2 /2 m 3=9 0 1 2 3 4 5 6 7 8

g /2 0 1 2 3 4 5 6 7 8  

Figure 15.   RSNS and RNS Vectors for Even Index g. 

From Figure 15, it can be seen that the RSNS vectors are transformed into RNS 

vectors with the same PRP moduli. The index position g/2 can now be solved directly 

using the standardized CRT [10]. However, there are still up to 23 or eight systems of 

equations to solve in order to find the positions of a single RSNS vector within the 

fundamental period. This is due to the symmetry of each RSNS channel period and three 

sub-channel structure within each channel period. 

This process can be simplified by limiting the solution range to within the DR. 

The problem is then reduced to finding the least positive solution of the eight systems of 

equations, explained in the next section. 

2. Dynamic Range Compression 

A closed-form solution for the start and end DR positions for moduli of form (2r – 

1, 2r, 2r + 1) was derived in [6]. The radix r is 3 for an RSNS with moduli [7  8 9]im  . 

The start and end positions can be calculated using [6]: 

 3 1 1
1

ˆStart Position of : 3 2 2 2 1r r rM h     

    

(13) 

and 
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 3 1 2 1
2

ˆEnd Position of : 3 2 2 1.r rM h    

    

(14) 

 

The DR range is from 1 7 3 3h 
 

and 2 8 6 5h 
 

for a RSNS with 

 7  8  9im  . The corresponding RSNS vectors are 733 [6 4 7]TX   and 865 [6 0 1]TX   

using the method described in [5]. 

Recall that this algorithm is applied to the  Te e e vectors in the Sub-Channel 0 

case only. Thus, the closest  Te e e  vectors to 733X  and 865X  must be chosen for this 

conversion to work. They are 732 [6 4 8]TX   and 864 [6 0 0]TX  . 

At this juncture, it must be noted that the chosen start position 1 732h   falls 

outside the DR, which will produce ambiguous results during implementation. This is a 

special case where the DR does not start with a Sub-Channel 0 vector and end with a 

Sub-Channel 2 vector, as required in Figure 9. 

There are two methods to overcome this. The first is to truncate the DR to a 

multiple of six, so that the DR will always start with a Sub-Channel 0 vector. 

Alternatively, the boundary (start and end) vectors have to be treated as special cases in 

the LabVIEW implementation. The details of both methods will be addressed in Chapters 

IV and V. 

 Applying (6), we calculate the corresponding start and end indices for the RNS 

XRg vectors as: 

1 2
1 2

732 864
244,         288.

3 3 3 3

h h
g g     

 

   

(15) 

 

 Using the results from Figure 14, we consider only the even RNS XRg vectors. 

The corresponding start and end indices for the RNS XRg/2 / 2 vectors are calculated as: 

 

1 2244 288
122,          144.

2 2 2 2

g g
   

   

(16) 
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Using the results from (16), we obtain the total number of RNS vectors required 

to find the LPS for the index g as 2 1 1 144 122 1 23
2 2

g g
      , shown in Figure 

16. The RNS vectors in Figure 16 are derived from Figure 15 by extending the 

'/ 2g index from 122 to 144. The representation of the DR is now compressed from a 

length of 133 vectors to 23 vectors. 

 

RNS m 1=7 … 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 …

Vectors m 2=8 … 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 …

XR g /2 /2 m 3=9 … 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 …

g /2 … 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 …

RNS m 1=7 … 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 …

Vectors m 2=8 … 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 …

XR g' /2 /2 m 3=9 … 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 …

LPS g' /2 … 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 …

 

Figure 16.   RNS Vectors Spanning DR (Before and After Shifting Start Position). 

This compression is possible because using only Sub-Channel 0 vectors 

compresses the DR by three, and exploiting its even-odd structure yields an additional 

compression factor of two. Thus, the total compression factor is 2N, and the number of 

RNS vectors required to find the LPS for the index g is [2]: 

 
ˆ 133

23.
2 6

M
L

N

          
    (17) 
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Another useful RNS property is that subtracting a particular RNS vector from all other 

RNS vectors in the fundamental period shifts the start of the RNS sequence to the 

position of the same vector [2]. 

From this fact, the RNS vector /2 122 [3 2 5]
2 2

g TXR XR
   is subtracted from all 

RNS vectors between 122

2

XR
 and 144

2

XR
 to obtain the shifted RNS sequence in the 

bottom row of Figure 16. This means that the solution for the index h is now shifted to 

the range 0 ' 132h   rather than 733 865h  . This is desirable as the former can be 

represented in an 8-bit binary number, while the latter requires 10 bits. 

3. Alignment of RNS Least Positive Solution 

A method of finding the LPS to multiple systems of equations is a positional 

alignment solution. This method asserts the positions of the RNS residues for each 

channel of the '/2

2
gXR

 vectors, shown in Figure 16. The LPS is the position '/ 2g of the 

first '/2

2
gXR

 vector in which all three asserted residues align [2]. 

After finding the LPS '/ 2g  for a particular RSNS vector 1 2 3[   ]T
hX s s s , the LPS 

is converted back to the shifted index 'h  by reversing the sub-channel and even-odd 

compression process carried out before the LPS alignment. Using SCF  to denote the sub-

channel compensation factor, oddF  as the even-odd compensation factor, and (6), the 

expression to obtain 'h  is [2]: 

' 3( ' ) ,odd SCh g F F       (18) 

where 



 24

1

1

0,  if residue  from  is even
,

1,  if residue  from  is odd 

0,  if   is from Sub-Channel 0

1,  if   is from Sub-Channel 1 .

2,  if   is from Sub-Channel 2 

h
odd

h

h

hSC

h

s X
F

s X

X

XF

X

 
  
 

 
   
 
 

   (19) 

 

Since 'h  is the index h after shifting the DR start position to zero, the position of the 

RSNS vector within the DR, or index h, can simply be obtained by adding the DR start 

position h1: 

1 '.h h h       (20) 

 

The key principles and steps of the RSNS-to-binary conversion algorithm 

described in this chapter are encapsulated in Figure 17. An efficient RSNS-to-binary 

conversion can be achieved by exploiting the RSNS-RNS relationship, as well as using 

the RNS LPS and positional alignment techniques to solve for the DR position. 

 

 

Figure 17.   RSNS-to-Binary Conversion Algorithm (After [2]). 

 The translation of the principles of this RSNS-to-binary conversion algorithm into 

a feasible logic block diagram is explained in the next chapter. 
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III. RSNS-TO-BINARY CONVERSION 

Given the key principles of the RSNS-to-binary conversion algorithm described in 

the last chapter, the translation of this algorithm into a feasible logic block diagram for 

implementation in the LabVIEW programming environment is explained in this chapter. 

A. LOGIC BLOCK DIAGRAM OF RSNS-TO-BINARY CONVERTER 

The overall logic block diagram of this converter that can be implemented in 

LabVIEW and the input/output variables for each block are shown in Figure 18. The 

subsequent sections will detail why each logic block is required and how it is derived. 

 

 
 

Figure 18.   Logic Block Diagram of RSNS-to-Binary Converter (After [4]). 

The inputs of this conversion system come from a bank of 24 comparators at the 

end of a photonic analog folding circuit and can be represented as a three-channel RSNS 

vector as shown in (2). These comparator outputs are separated into three channels of 

seven, eight and nine comparators, according to the Moduli [7  8 9]im  . 
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The input residues  1 2 3, ,
T

s s s are encoded in a thermometer code for this 

implementation, according to (3). Each of the bits in the thermometer code is labeled 

as iks , where the index i represents the channel of the RSNS residue vector, and the index 

k is the bit position in the thermometer code, with 0k   corresponding to the position of 

the Least Significant Bit (LSB). The RSNS thermometer code bits for [7  8 9]im   are 

shown in Figure 19. 

RSNS 
Residue 
Value

RSNS 
Residue 
Value

s 1 s 16 s 15 s 14 s 13 s 12 s 11 s 10 s 2 s 27 s 26 s 25 s 24 s 23 s 22 s 21 s 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1
2 0 0 0 0 0 1 1 2 0 0 0 0 0 0 1 1
3 0 0 0 0 1 1 1 3 0 0 0 0 0 1 1 1
4 0 0 0 1 1 1 1 4 0 0 0 0 1 1 1 1
5 0 0 1 1 1 1 1 5 0 0 0 1 1 1 1 1
6 0 1 1 1 1 1 1 6 0 0 1 1 1 1 1 1
7 1 1 1 1 1 1 1 7 0 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1

RSNS Thermometer Bits RSNS Thermometer Bits

 

RSNS 
Residue 
Value

s 3 s 38 s 37 s 36 s 35 s 34 s 33 s 32 s 31 s 30

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 1 1
3 0 0 0 0 0 0 1 1 1
4 0 0 0 0 0 1 1 1 1
5 0 0 0 0 1 1 1 1 1
6 0 0 0 1 1 1 1 1 1
7 0 0 1 1 1 1 1 1 1
8 0 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1

RSNS Thermometer Bits

 

Figure 19.   RSNS Thermometer Codes for [7  8 9]im  . 
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B. POSITION BIT CONVERSION 

The next step is to convert the RSNS thermometer code residues into RNS 

residues using the one-to-one correspondence property of the RSNS-RNS relationship. 

Each RNS residue can be represented by a unique position bit. 

The position bits are denoted as ikp , where the index i is the channel and k is the 

RNS residue value with  0 1ik m   . The LPS is then found by finding the position 

'/ 2g  where the three position bits from each channel are asserted and aligned. 

1. RSNS Thermometer Code to RNS Residue/Position Bit Conversion 

The simplest case for this conversion is to consider the residues for Channel 1. 

From Equations (7), (8) and (9), we see that the top row of each set of equations is 

identical. This means that the conversion of RSNS residues to RNS residues for Channel 

1 is the same regardless of the sub-channel that the residue comes from. The conversion 

process for Channel 1 1( 7)m   is shown in Figure 20. 

 

 

RSNS 
Residue

0 0 0 0 0 0 0
1 1 13 0 12 0 6
2 2 12 2 12 1 6
3 3 11 2 10 1 5
4 4 10 4 10 2 5
5 5 9 4 8 2 4
6 6 8 6 8 3 4
7 7 7 6 6 3 3

RNS 
Residue

Even RNS Residue
RNS Residue for 

PRP Moduli

1s 1even( )s114 s 1even(14 )s
1even( )

2

s 1even(14 )

2

s
1s

 

Figure 20.   Channel 1 RSNS-to-RNS Conversion for all Sub-Channels (After [2]). 
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Recall that each RSNS residue value 1s  can be represented by two unique RNS 

residues to prevent ambiguity within a single channel period, as illustrated in Figure 14 

previously. This conversion is shown as Step 0 to 1 in Figure 20. 

The RNS residues are then rounded down to the nearest even RNS residues and 

divided by two to obtain RNS residues with the same PRP moduli as the RSNS, as 

illustrated in Figure 15 previously. This conversion is shown as Steps 1 to 3 in Figure 20. 

The asserted position bits corresponding to each of the RSNS and RNS residues are 

shown in Figure 21. 

 

RSNS 
Residue

0 0 0 0 0 0 0 0 0 1
1 0 6 1 0 0 0 0 0 1
2 1 6 1 0 0 0 0 1 0
3 1 5 0 1 0 0 0 1 0
4 2 5 0 1 0 0 0 1 0
5 2 4 0 0 1 0 1 0 0
6 3 4 0 0 1 1 0 0 0
7 3 3 0 0 0 1 0 0 0

RNS Residue for 
PRP Moduli

Position Bits

1s
1even( )

2

s 1even(14 )

2

s
12p 11p 10p13p14p16p 15p

 

Figure 21.       Channel 1 RSNS-RNS-Position Bit Correspondences for all Sub-
Channels (After [2]). 

The conversion process for Channel 2 2( 8)m   and Channel 3 3( 9)m 
 
are 

similar to that of Channel 1, except that they are left-shifted by one and two positions, 

respectively. Examination of (7), (8) and (9) reveals that this impacts the conversion of 

RSNS residues from different sub-channels. 

The RSNS to position bit conversion process for Sub-Channels 0 and 1 of 

Channel 2 are illustrated in Figures 22 and 23. The same process for Sub-Channel 2 is 

illustrated in Figures 24 and 25. 
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Note that Sub-Channel 2 is shifted by one relative to Sub-Channels 0 and 1, from 

(7), (8) and (9). A comparison of Figures 23 and 25 shows that the position bits of Sub-

Channel 2 are the reversed of those for Sub-Channels 0 and 1. 

 

RSNS 
Residue

0 0 0 0 0 0 0
1 1 15 0 14 0 7
2 2 14 2 14 1 7
3 3 13 2 12 1 6
4 4 12 4 12 2 6
5 5 11 4 10 2 5
6 6 10 6 10 3 5
7 7 9 6 8 3 4
8 8 8 8 8 4 4

RNS 
Residue

Even RNS Residue
RNS Residue for PRP 

Moduli

2s 2even( )s216 s 2even(16 )s
2even( )

2

s 2even(16 )

2

s
2s

 

Figure 22.   Channel 2 RSNS-to-RNS Conversion for Sub-Channels 0 and 1 (After 
[2]). 

RSNS 
Residue

0 0 0 0 0 0 0 0 0 0 1
1 0 7 1 0 0 0 0 0 0 1
2 1 7 1 0 0 0 0 0 1 0
3 1 6 0 1 0 0 0 0 1 0
4 2 6 0 1 0 0 0 1 0 0
5 2 5 0 0 1 0 0 1 0 0
6 3 5 0 0 1 0 1 0 0 0
7 3 4 0 0 0 1 1 0 0 0
8 4 4 0 0 0 1 0 0 0 0

RNS Residue for PRP 
Moduli

Position Bits

2s
2even( )

2

s 2even(16 )

2

s
22p 21p 20p23p24p26p 25p27p

 

Figure 23.   Channel 2 RSNS-RNS-Position Bit Correspondences for Sub-Channels 0 
and 1 (After [2]). 
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RSNS 
Residue

0 15 15 14 14 7 7
1 0 14 0 14 0 7
2 1 13 0 12 0 6
3 2 12 2 12 1 6
4 3 11 2 10 1 5
5 4 10 4 10 2 5
6 5 9 4 8 2 4
7 6 8 6 8 3 4
8 7 7 6 6 3 3

RNS 
Residue

Even RNS Residue
RNS Residue for PRP 

Moduli

2s 2even( 1)s 215 s 2even(15 )s
2even( 1)

2

s  2even(15 )

2

s
2 1s 

 

 

Figure 24.   Channel 2 RSNS-to-RNS Conversion for Sub-Channel 2 (After [2]). 

RSNS 
Residue

0 7 7 1 0 0 0 0 0 0 0
1 0 7 1 0 0 0 0 0 0 1
2 0 6 0 1 0 0 0 0 0 1
3 1 6 0 1 0 0 0 0 1 0
4 1 5 0 0 1 0 0 0 1 0
5 2 5 0 0 1 0 0 1 0 0
6 2 4 0 0 0 1 0 1 0 0
7 3 4 0 0 0 1 1 0 0 0
8 3 3 0 0 0 0 1 0 0 0

RNS Residue for PRP 
Moduli

Position Bits

2s
2even( )

2

s 2even(15 )

2

s
22p 21p 20p23p24p26p 25p27p

 

 

Figure 25.   Channel 2 RSNS-RNS-Position Bit Correspondences for Sub-Channel 2 
(After [2]). 
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The RSNS to position bit conversion process for Sub-Channel 0 of Channel 3 are 

illustrated in Figures 26 and 27. The same process for Sub-Channels 1 and 2 is illustrated 

in Figures 28 and 29. Note that Sub-Channels 1 and 2 are shifted by one relative to Sub-

Channel 0, from (7), (8) and (9). A comparison of Figures 27 and 29 shows that the 

position bits of Sub-Channels 1 and 2 are the reversed of those for Sub-Channel 0. 

RSNS 
Residue

0 0 0 0 0 0 0
1 1 17 0 16 0 8
2 2 16 2 16 1 8
3 3 15 2 14 1 7
4 4 14 4 14 2 7
5 5 13 4 12 2 6
6 6 12 6 12 3 6
7 7 11 6 10 3 5
8 8 10 8 10 4 5
9 9 9 8 8 4 4

RNS 
Residue

Even RNS Residue
RNS Residue for PRP 

Moduli

3s 3even( )s318 s 3even(18 )s
3even( )

2

s 3even(18 )

2

s
3s

 

Figure 26.   Channel 3 RSNS-to-RNS Conversion for Sub-Channel 0 (After [2]). 

RSNS 
Residue

0 0 0 0 0 0 0 0 0 0 0 1
1 0 8 1 0 0 0 0 0 0 0 1
2 1 8 1 0 0 0 0 0 0 1 0
3 1 7 0 1 0 0 0 0 0 1 0
4 2 7 0 1 0 0 0 0 1 0 0
5 2 6 0 0 1 0 0 0 1 0 0
6 3 6 0 0 1 0 0 1 0 0 0
7 3 5 0 0 0 1 0 1 0 0 0
8 4 5 0 0 0 1 1 0 0 0 0
9 4 4 0 0 0 0 1 0 0 0 0

RNS Residue for PRP 
Moduli

Position Bits

3s
3even( )

2

s 3even(18 )

2

s
32p 31p 30p33p34p36p 35p37p38p

 

Figure 27.   Channel 3 RSNS-RNS-Position Bit Correspondences for Sub-Channel 0 
(After [2]). 
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RSNS 
Residue

0 17 17 16 16 8 8
1 0 16 0 16 0 8
2 1 15 0 14 0 7
3 2 14 2 14 1 7
4 3 13 2 12 1 6
5 4 12 4 12 2 6
6 5 11 4 10 2 5
7 6 10 6 10 3 5
8 7 9 6 8 3 4
9 8 8 8 8 4 4

RNS 
Residue

Even RNS Residue
RNS Residue for PRP 

Moduli

3s 3even( )s317 s 3even(17 )s
3even( 1)

2

s  3even(17 )

2

s
3 1s 

 

Figure 28.   Channel 3 RSNS-to-RNS Conversion for Sub-Channels 1 and 2 (After 
[2]). 

RSNS 
Residue

0 8 8 1 0 0 0 0 0 0 0 0
1 0 8 1 0 0 0 0 0 0 0 1
2 0 7 0 1 0 0 0 0 0 0 1
3 1 7 0 1 0 0 0 0 0 1 0
4 1 6 0 0 1 0 0 0 0 1 0
5 2 6 0 0 1 0 0 0 1 0 0
6 2 5 0 0 0 1 0 0 1 0 0
7 3 5 0 0 0 1 0 1 0 0 0
8 3 4 0 0 0 0 1 1 0 0 0
9 4 4 0 0 0 0 1 0 0 0 0

RNS Residue for PRP 
Moduli

Position Bits

3s
3even( 1)

2

s  3even(17 )

2

s
32p 31p 30p33p34p36p 35p37p38p

 

 

Figure 29.   Channel 3 RSNS-RNS-Position Bit Correspondences for Sub-Channels 1 
and 2 (After [2]). 
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2. Position Bit Equations 

Using logic tables and Karnaugh mapping, we can show that the general 

equations of the position bits for even and odd moduli are [2]: 
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 (21) 

for even moduli, and 
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
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
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


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
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



 (22) 

for odd moduli. 
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Equations (21) and (22) are used to generate the position bits as follows: 

 

10 11

11 11 13

12 13 15
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15 12 14
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,

,
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,
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p s
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


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







 (23) 

for 1 7m  , and 
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

 (24) 

for 2 8m  , and 
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33 35 37
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35 36 38
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
















 (25) 

for 3 9m  . 
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C. EVEN RESIDUE AND SUB-CHANNEL FLAGS 

From Figures 20–29, it can be seen that only the position bits representing even 

RSNS residues for all three channels require bit reversal, depending on the sub-channel 

they come from. This means that a logic block is required in the converter diagram to 

check for even residues and their sub-channels. 

1. Even Residue Flags 

The letter ‘e’ is used to represent an even residue flag, with the subscript denoting 

the channel. Each flag will be asserted when the RSNS residue is even. It was shown in 

[2] that the general equations of the even residue flags are: 

 

  0 1 2 3 4 1Even Moduli: 
ii i i i i i i me s s s s s s       (26) 

and 

    0 1 2 3 4 2 1Odd Moduli: .
i ii i i i i i i m i me s s s s s s s       (27) 

 

Equations (26) and (27) are used to generate the even residue flags as follows: 

 

 

1 10 11 12 13 14 15 16

2 20 21 22 23 24 25 26 27

3 30 31 32 33 34 35 36 37 38

Channel 1: ,

Channel 2: ,

Channel 3: .

e s s s s s s s

e s s s s s s s s

e s s s s s s s s s

   

    

    

 (28) 

 

2. Sub-Channel Flags 

The symbol ‘SC’ is used to represent a sub-channel flag, with the subscript 

denoting the channel. Each flag is used to determine if the position bits of each RSNS 

residue require reversal, depending on their sub-channels. With the sub-script N to denote 

the number of channels in the system, it was shown in [2] that the general equations of 

the sub-channel flags are: 
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1 1 2

2 2 3

2 2 1

1 1

0 1

,

,

,

,

,

N

N

N N

N N

N

SC e e

SC e e

SC e e

SC e e

SC e e





 



 

 

 

 

 


 (29) 

 
where 

 

denotes an XOR operation.

 

 

Equation (29) is used to generate the sub-channel flags as follows: 

 

 

0 3 1

1 3 2

2 2 1

,

,

.

SC e e

SC e e

SC e e

 
 
 

 (30) 

 

D. CONDITIONAL BIT REVERSAL 

Conditional bit reversal of the position bits is based on the sub-channel flags. In 

order to maintain proper housekeeping of variable-naming, all position bits after 

inversion have an additional subscript ‘a’. 

Based on Figures 20–29, the position bits of Channel 1 are never reversed. The 

position bits of Channel 2 are reversed if the residue is from Sub-Channel 2, i.e., when 

2SC  is asserted. The position bits of Channel 3 are reversed if the residue is from Sub-

Channel 1 or 2, i.e., when 0SC is asserted. Note that 1SC  is not required for this shift 

sequence. 

This reversal procedure can be accomplished via multiplexer circuits using the 

sub-channel flags as control signals and will be shown in Chapter IV. 
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E. LEAST POSITIVE SOLUTION ALIGNMENT 

After determining the position bits for each channel, the position bits from all 

three channels are then used to compute the LPS of the positional alignment. One useful 

property is to make use of the one-to-one correspondence between the RNS residues and 

the position bits. This allows the RNS residues to be replaced by the position bits in 

Figure 16. This is shown in Figure 30. 

Recall from (15) and (16) that the RNS vector /2 122 [3 2 5]
2 2

g TXR XR
   

corresponds to the RSNS vector 732 [6 4 8]TX  , which is of form  Te e e  and from Sub-

Channel 0. From Figure 21, the RSNS Channel 1 residue 1 6s  corresponds to RNS 

residues of 3 and 4, which are asserted and highlighted in Figure 30. Similarly, from 

Figure 23, the RSNS Channel 2 residue 2 4s  corresponds to RNS residues of 2 and 6, 

and the RSNS Channel 3 residue 3 8s  corresponds to RNS residues of 3 and 5 from 

Figure 27. 

 

RNS m 1=7 … 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 …

Vectors m 2=8 … 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 …

XR g /2 /2 m 3=9 … 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 …

LPS g /2 … 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 …

m 1=7 … p13 p14 p15 p16 p10 p11 p12 p13 p14 p15 p16 p10 p11 p12 p13 p14 p15 p16 p10 p11 p12 p13 p14 …

m 2=8 … p22 p23 p24 p25 p26 p27 p20 p21 p22 p23 p24 p25 p26 p27 p20 p21 p22 p23 p24 p25 p26 p27 p20 …

m 3=9 … p35 p36 p37 p38 p30 p31 p32 p33 p34 p35 p36 p37 p38 p30 p31 p32 p33 p34 p35 p36 p37 p38 p30 …

LPS g' /2 … 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 …

Position 
Bits

 
 

Figure 30.   LPS Alignment using Position Bits. 
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The asserted RNS residues for the three channels are shown in Figure 30. Ideally, 

only one LPS should be active within the DR to prevent ambiguities. However, there is 

more than one LPS (LPS0 and LPS8) asserted for this case. 

There is an ambiguity in this case because the DR length (133) is not evenly 

divisible by six, and the DR starts at an index position (733) that is not evenly divisible 

by six. There are two methods to overcome this, and these are explained below. 

1. Full Dynamic Range With LPS Priority 

If the DR is not truncated to a length that is evenly divisible by six, it is possible 

that two LPS equations will be asserted at the same time – one of the boundary LPS 

equations (i.e., LPS0 or LPS22) and LPSX. If the full DR is to be maintained, the 

boundary LPS equation should always be ignored in favor of the LPSX solution. 

This can be done by using additional logic circuitry to check for such cases and 

giving priority to the LPSX solution over the boundary LPS equations. The details of this 

circuitry are elaborated in Chapter V. 

2. Truncated Dynamic Range 

The DR can be truncated to a length that is evenly divisible by six, i.e., 126, so 

that it starts with a Sub-Channel 0 vector and ends with a Sub-Channel 2 vector, as 

required in Figure 9. The number of RNS vectors required to span the DR is now: 

 
ˆ 126

21.
2 6

M
L

N

          
    (31) 

 

For the first case where the full DR is maintained, the number of RNS vectors 

required to span the DR is 23, in accordance with (17). The full 23 alignment equations 

are given by 
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20: ,

21: ,
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LPS n p p p
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LPS n p p p
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 (32) 

 

These operations can be accomplished using 3-input NAND gates. Note that the last two 

LPS equations (LPS21 and LPS22) are not required for the truncated DR case. 
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F. ENCODER 

The next step is to convert from the LPS index / 2g  to a binary representation of 

the position h of the RSNS vector within the DR bounds. Since only one of the LPSX 

equations will be asserted at any one time, an encoder can be used to convert the 23 

possible outputs to a binary representation using B bits, calculated via 

2log .B L         (33) 

 

Five bits are required for both the full and truncated DR cases, with a 23-to-5 encoder for 

the full DR case and a 21-to-5 encoder for the truncated DR case. 

G. ADDER 

As the output of the encoder is a five-bit representation of / 2g , a left-shifted 

version of / 2g  is equivalent to a multiplication by two and converts it to a six-bit index 

g. From (18), the oddF  compensation factor has to be computed next, as the DR was 

compressed using even residues only. The factor oddF  is equal to 1e  since the 

complement of 1e  is asserted when the Channel 1 residue 1s  is odd, as shown in (28). The 

LSB of g is guaranteed to be zero, as g is a left-shifted version of / 2g . Thus, the even 

residue flag 1e  can replace the LSB of g. 

From Equation (18), the computation of 13( )g e  is also required. It is easier to 

implement this as 3 2X X X   in hardware using a wired shift and an adder rather than 

a multiplication by three using a multiplexer. To achieve this, 1( )g e  is shifted one 

position left to form  12 g e  and used as the input to an eight-bit carry-look-ahead 

adder. This concept is illustrated in Figure 31, where the notation bg  refers to the bth bit 

of the binary representation of index g [2]. 
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 
 
 

1 4 3 2 1 0 1

1 4 3 2 1 0 1

' ' ' ' ' ' ' '
1 7 6 5 4 3 2 1 0

2                  2                 0

                                 

3                   3               

X g e g g g g g e

X g e g g g g g e

X g e h h h h h h h h



     



 

Figure 31.   Adder Function for Implementing Multiplication by Three (After [2]). 

Lastly, Equation (18) requires the addition of the SCF  compensation factor, as the 

DR was compressed using Sub-Channel 0 vectors only. The SCF  compensation factor is 

represented by the signals 2SC  and 0SC  from (30), which are asserted if the Channel 2 

residue is from Sub-Channel 2, and the Channel 3 residue is from Sub-Channel 1 or 2, 

respectively. 

Fortunately, the left shift of 1( )g e  provides a LSB slot guaranteed to be zero, 

and the carry-in to the adder provides another LSB slot. This allows 1( )g e ,  12 g e , 

0SC , and 2SC  to be summed in a single adder [2], shown in Figure 32. 

 

 
 
 

01 4 3 2 1 0 1 2

1 4 3 2 1 0 1

' ' ' ' ' ' ' '
1 7 6 5 4 3 2 1 0

2                  2                  (carry-in)

                                 

3                   3               

X g e g g g g g e SC SC

X g e g g g g g e

X g e h h h h h h h h

 

     



 

Figure 32.   Single Adder for Converting LPS to Binary (After [2]). 

The output of this adder is the binary representation of the position h within the 

DR for the RSNS vector  1 2 3hX s s s
 . The LabVIEW circuit schematics that 

implement the logic equations developed in this chapter are provided in the next chapter. 
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IV. LABVIEW IMPLEMENTATION OF RSNS-TO-BINARY 
CONVERSION 

Using the logic equations developed in the previous chapter, we document the 

process of implementing the RSNS-to-binary converter in the NI LabVIEW 

programming environment in this chapter. 

A. LABVIEW SCHEMATICS OF RSNS-TO-BINARY CONVERTER 

The NI LabVIEW programming environment was specifically selected as its 

programming structure is modular in nature. This allows the codes for each logic block to 

be stored as sub-routines or sub-Virtual Instruments (sub-VIs) and run as part of a larger 

routine or Virtual Instrument (VI). 

This modular structure is beneficial for the future expansion of such RSNS ADC 

system as it allows additional sub-routines to be designed and added to existing routines 

should it be decided to scale the ADC to higher moduli configurations in future. 

In addition, if the ADC requires future upgrading, it is relatively easy to replace 

current FPGA modules with other higher-speed and higher-bandwidth NI modules with 

minimal disruption to existing codes due to its plug-and-play features. 

The overall schematics of this converter in LabVIEW are shown in Figure 33 

based on the major logic blocks developed in Chapter III. The process of constructing 

each logic block as a sub-routine and implementing it as part of the overall routine is 

detailed in the subsequent sections. 
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Figure 33.   Overall LabVIEW Schematics of RSNS-to-Binary Converter. 

B. POSITION BIT CONVERSION AND EVEN RESIDUE/SUB-CHANNEL 
FLAGS 

The logic blocks for position bit conversion and even residue flags are combined, 

as both of them can be calculated using the thermometer codes from the comparators. 

The Boolean equations used are modified from those in Chapter III. The only changes are 

the application of DeMorgan’s Theorem to use NAND, NOR and inverter gates 

predominantly. 

1. Channel 1 

DeMorgan’s Theorem was applied to equations (23) and (28) to obtain: 
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p s s s s

p s s s s

p s s s s



  

  


  

  
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 (34) 

and 

    1 10 11 12 13 14 15 16 10 11 12 13 14 15 16 .e s s s s s s s s s s s s s s      (35) 

 

The implementation of equations (34) and (35) in LabVIEW is shown in Figure 33. 

 

Figure 34.   LabVIEW Schematics of Channel 1 Position Bit and Even Residue Flag. 
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2. Channel 2 

DeMorgan’s Theorem was applied to equations (24) and (28) to obtain 
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22 23 25 23 25

23 25 27 25 27

24 26

25 24 26 24 26

26 22 24 22 24
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,

,

p s
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p s s s s
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p s s s s

p s s s s



  

  

  


  

  

  

 (36) 

and 

    2 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27.e s s s s s s s s s s s s s s s s       (37) 

 

The implementation of equations (36) and (37) in LabVIEW is shown in Figure 35. 

 

Figure 35.   LabVIEW Schematics of Channel 2 Position Bit and Even Residue Flag. 
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3. Channel 3 

DeMorgan’s Theorem was applied to equations (25) and (28) to obtain 

 

 

30 31

31 31 33 31 33

32 33 35 33 35

33 35 37 35 37

34 37

35 36 38 36 38

36 34 36 34 36

37 32 34 32 34

38 30 32 30 32

,

,

,

,

,

,

,

,

,

p s

p s s s s

p s s s s

p s s s s

p s

p s s s s

p s s s s

p s s s s

p s s s s



  

  

  


  

  

  

  

 (38) 

and 

     3 30 31 32 33 34 35 36 37 38 30 31 32 33 34 35 36 37 38 .e s s s s s s s s s s s s s s s s s s       (39) 

 

The implementation of equations (38) and (39) in LabVIEW is shown in Figure 36. 
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Figure 36.   LabVIEW Schematics of Channel 3 Position Bit and Even Residue Flag. 

4. Sub-Channel Flags 

Equation (30) was used to construct the Sub-Channel flags in Figures 37 and 38 

using XOR gates. They are used to check if the position bits of each RSNS residue 

require bit reversal, depending on which sub-channel it is from. 

 

 

Figure 37.   Sub-Channel 0 Flag. 
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Figure 38.   Sub-Channel 2 Flag. 

C. CONDITIONAL BIT REVERSAL 

Each inverted position bit was mapped from two possible states, depending on 

whether it was inverted or not. For example, the position bit p20a was mapped from p20 if 

it was not inverted and mapped from p27 if it was inverted. Thus, the Boolean expression 

for position bit p20a can be expressed as:   20 27 2 20 2 27 2 20 2ap p SC p SC p SC p SC   . 

The conditional bit reversal for each position bit can be accomplished by the use 

of a 2-to-1 multiplexer, shown in Figure 39, using the sub-channel flag as a control 

signal. The desired output is either Input 1 or Input 2, depending on whether the control 

signal is asserted or not asserted, respectively. This procedure can be applied to all the 

other position bits. 

 

Figure 39.   2-to-1 Multiplexer (After [4]). 

Given Figure 39 as a basic building block, the multiplexer architecture is 

extended to form the Channel 2 and Channel 3 bit reversal circuits, shown in the next two 

sections. The only modifications are that NAND gates are predominantly used to achieve 

the same logic operation as the AND and OR gates in Figure 39. 
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1. Channel 2 Reversal 

Recall that the position bits of Channel 1 are never reversed from Figure 21. Thus, 

a Channel 1 reversal circuit is not required for this implementation. For Channel 2, the 

position bits are reversed if the residue is from Sub-Channel 2, i.e., when 2SC  is asserted, 

from a comparison of Figures 23 and 25. The LabVIEW schematics of the Channel 2 

conditional bit reversal circuit are shown in Figure 40. 

 

Figure 40.   LabVIEW Schematics of Channel 2 Conditional Bit Reversal.  

2. Channel 3 Reversal 

For Channel 3, the position bits are reversed if the residue is from Sub-Channel 1 

or 2, i.e., when 0SC is asserted, from a comparison of Figures 27 and 29. The LabVIEW 

schematics of the Channel 3 conditional bit reversal circuit are shown in Figure 41. 
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Figure 41.   LabVIEW Schematics of Channel 3 Conditional Bit Reversal. 

D. ALIGNMENT LOGIC 

The LabVIEW schematics of the alignment logic circuit to achieve the full DR of 

133 are shown in Figure 42. It is a direct mapping of equation (32). The only 

modification is the insertion of inverters to allow the proper functioning of the encoder 

circuit. 
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Figure 42.   LabVIEW Schematics of Alignment Logic (Full DR). 

Note that the last two LPS equations (LPS21 and LPS22) are not required for the 

truncated DR case, and have to be removed if it is implemented. 
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E. ENCODER 

Since only one of the LPSX equations will be asserted at any one time in the 

Alignment Logic circuit in Figure 42, an encoder can be used to convert the 23 possible 

outputs to a 5-bit representation. 

To achieve this, a logic table is derived in Table 2. The function of the encoder is 

to convert the LPS number of the asserted NAND gate into a five-bit output. For 

example, if n22 is the active NAND gate, the encoder output will be 10110. 

 

Table 2. Encoder Logic Table. 

Active NAND Gate g4 g3 g2 g1 g0 
n0 0 0 0 0 0 
n1 0 0 0 0 1 
n2 0 0 0 1 0 
n3 0 0 0 1 1 
n4 0 0 1 0 0 
n5 0 0 1 0 1 
n6 0 0 1 1 0 
n7 0 0 1 1 1 
n8 0 1 0 0 0 
n9 0 1 0 0 1 
n10 0 1 0 1 0 
n11 0 1 0 1 1 
n12 0 1 1 0 0 
n13 0 1 1 0 1 
n14 0 1 1 1 0 
n15 0 1 1 1 1 
n16 1 0 0 0 0 
n17 1 0 0 0 1 
n18 1 0 0 1 0 
n19 1 0 0 1 1 
n20 1 0 1 0 0 
n21 1 0 1 0 1 
n22 1 0 1 1 0 
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The output bits of the encoder are thus the OR combination of all the logic 1s in 

their respective columns in Table 2. For example, g4 will be asserted if any of the n16, 

n17, n18, n19, n20, n21 and n22 gate is active. Again, note that the last two gates are not 

required for the truncated DR case and have to be removed if it is implemented. 

The LabVIEW implementation of the encoder for the truncated DR and the full 

DR cases are highlighted in the next two sections. 

1. Truncated Dynamic Range 

The logical binary expressions for the 21-to-5 encoder for the truncated DR case, 

derived from Table 2, are given by 
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     

   

 (40) 

 
 

The implementation of equation (40) in LabVIEW as an encoder circuit to 

achieve the truncated DR of 128 is shown in Figure 43. 
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Figure 43.   LabVIEW Schematics of Encoder (Truncated DR). 

2. Full Dynamic Range 

The logical binary expressions for the 23-to-5 encoder for the full DR case, 

derived from Table 2, are given by 

 

    
     
    
   
   

0 1 3 5 7 9 11 13 15 17 19 21

1 2 3 6 7 10 11 14 15 18 19 22

2 4 5 6 7 12 13 14 15 20 21 22

3 8 9 10 11 12 13 14 15

4 16 17 18 19 20 21 22 .

g n n n n n n n n n n n

g n n n n n n n n n n n

g n n n n n n n n n n n

g n n n n n n n n

g n n n n n n n

       

       

       

     

    

 (41) 
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The implementation of equation (41) in LabVIEW as an encoder circuit is shown 

in Figure 44. 

 

Figure 44.   LabVIEW Schematics of Encoder (Full DR). 
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F. ADDER 

 The LabVIEW schematics of the adder circuit to convert the encoder’s 5-bit 

representation to a binary representation of the position h within the DR are shown in 

Figure 45. It is a direct implementation of Figure 32. 

 

Figure 45.   LabVIEW Schematics of Adder. 

The implementation of the logic blocks of the RSNS-to-binary converter in LabVIEW 

was shown in this chapter. The simulation and testing of this converter to verify that the 

conversion logic is functioning properly is documented in the next chapter. 
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V. SIMULATION OF RSNS-TO-BINARY CONVERSION 

The simulation and testing of the RSNS-to-binary converter to verify that the 

conversion logic is functioning properly is contained in this chapter. The first section of 

this chapter is a description of the creation of thermometer codes for each channel in 

LabVIEW to simulate as the inputs to the conversion algorithm. The second section 

contains the key results obtained for three simulation models (truncated DR, full DR, and 

full DR with LPS Priority cases). 

A. LABVIEW THERMOMETER CODE GENERATORS 

The LabVIEW software does not have functions to generate the thermometer 

codes directly. However, the one-to-one correspondence between the RNS and RSNS 

vectors can be exploited to convert a RNS structure into a RSNS thermometer code. 

Previously, it was demonstrated in Figure 14 that each RSNS thermometer code 

can be mapped to a unique RNS state such that there is no ambiguity within a single 

channel period. Thus, LabVIEW functions can be created to act as counters to cycle 

through the RNS states for each channel, and digital logic can be added to map each RNS 

state to the required RSNS thermometer code. The next three sections contain the details 

of the procedure to generate the thermometer codes for each of the three channels. 

1. Channel 1 

The logic table for Channel 1 is shown in Table 3. The RNS states are represented 

by the bits 13 12 11 10{ , , , }i i i i and are the inputs to the Channel 1 thermometer code generator. 

The desired thermometer code output is represented by the RSNS bits 

16 15 14 13 12 11 10{ , , , , , , }s s s s s s s . 

Karnaugh maps are used to carry out logic minimization for Table 3, shown in 

Figure 46. 

 

 



 60

Table 3. Channel 1 ( 1 7m  ) Logic Table. 

RNS State i13 i12 i11 i10 RSNS State s16 s15 s14 s13 s12 s11 s10 
0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 1 0 0 0 0 0 0 1 
2 0 0 1 0 2 0 0 0 0 0 1 1 
3 0 0 1 1 3 0 0 0 0 1 1 1 
4 0 1 0 0 4 0 0 0 1 1 1 1 
5 0 1 0 1 5 0 0 1 1 1 1 1 
6 0 1 1 0 6 0 1 1 1 1 1 1 
7 0 1 1 1 7 1 1 1 1 1 1 1 
8 1 0 0 0 6 0 1 1 1 1 1 1 
9 1 0 0 1 5 0 0 1 1 1 1 1 
10 1 0 1 0 4 0 0 0 1 1 1 1 
11 1 0 1 1 3 0 0 0 0 1 1 1 
12 1 1 0 0 2 0 0 0 0 0 1 1 
13 1 1 0 1 1 0 0 0 0 0 0 1 

 

 

 

Figure 46.   Channel 1 Logic Minimization of Table 3 (After [4]). 
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The logic minimization in Figure 46 is used to produce the logic equations 

   
   

   
   

 

10 3 2 1 0 3 2 1 0

11 1 3 2 3 2 3 0 1 3 2 3 2 3 0

12 3 2 3 2 1 0 3 2 3 2 1 0

13 3 2 3 2 1 3 2 0 3 2 3 2 1 3 2 0

14 2 1 3 2 0 3 2 1 2 1 3 2 0 3 2 1

15 2 1 3 2 1 0 2 1 3 2 1

s i i i i i i i i

s i i i i i i i i i i i i i i

s i i i i i i i i i i i i

s i i i i i i i i i i i i i i i i

s i i i i i i i i i i i i i i i i

s i i i i i i i i i i i

       

    

   

   

   

    0

16 2 1 0 2 1 0

i

s i i i i i i     

(42) 

 

These logic equations are used to implement the Channel 1 thermometer code 

generator in LabVIEW, shown in Figure 47. 

 

Figure 47.   LabVIEW Channel 1 Thermometer Code Generator. 
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Note that DeMorgan’s Theorem was used to achieve a convenient pipelined 

implementation of all bits in the three channels. 

2. Channel 2 

The logic table for Channel 2 is shown in Table 4. The RNS states are represented 

by the bits 23 22 21 20{ , , , }i i i i and are the inputs to the Channel 2 thermometer code generator. 

The desired thermometer code output is represented by the RSNS bits 

27 26 25 24 23 22 21 20{ , , , , , , , }s s s s s s s s . 

 

Table 4. Channel 2 ( 2 8m  ) Logic Table. 

RNS State i23 i22 i21 i20 RSNS State s27 s26 s25 s24 s23 s22 s21 s20 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 1 0 0 0 0 0 0 0 1 
2 0 0 1 0 2 0 0 0 0 0 0 1 1 
3 0 0 1 1 3 0 0 0 0 0 1 1 1 
4 0 1 0 0 4 0 0 0 0 1 1 1 1 
5 0 1 0 1 5 0 0 0 1 1 1 1 1 
6 0 1 1 0 6 0 0 1 1 1 1 1 1 
7 0 1 1 1 7 0 1 1 1 1 1 1 1 
8 1 0 0 0 8 1 1 1 1 1 1 1 1 
9 1 0 0 1 7 0 1 1 1 1 1 1 1 
10 1 0 1 0 6 0 0 1 1 1 1 1 1 
11 1 0 1 1 5 0 0 0 1 1 1 1 1 
12 1 1 0 0 4 0 0 0 0 1 1 1 1 
13 1 1 0 1 3 0 0 0 0 0 1 1 1 
14 1 1 1 0 2 0 0 0 0 0 0 1 1 
15 1 1 1 1 1 0 0 0 0 0 0 0 1 

 

Karnaugh maps are used to carry out logic minimization for Table 4, shown in 

Figure 48. 
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Figure 48.   Channel 2 Logic Minimization of Table 4 (After [4]). 

The logic minimization in Figure 48 is used to produce the logic equations 

 

    
    

   
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22 3 2 2 1 3 1 0 3 2 1 3 2 2 1 3 1 0 3 2 1

23 3 2 3 2 3 1 0 3 2 3 2 3 1 0

24 3 2 3 2 0 3 2 1 3 2 3 2 0 3 2 1

25 3 2 1

s i i i i i i i i

s i i i i i i i i i i i i i i i i

s i i i i i i i i i i i i i i i i i i i i

s i i i i i i i i i i i i i i

s i i i i i i i i i i i i i i i i

s i i i

       

    

    
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26 3 2 1 3 2 1 0 3 2 1 3 2 1 0
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i i i i i i i i i i i i i i i

s i i i i i i i i i i i i i i

s i i i i i i i i

 

  

    

 (43) 
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These logic equations are used to implement the Channel 2 thermometer code 

generator in LabVIEW, shown in Figure 49. 

 

Figure 49.   LabVIEW Channel 2 Thermometer Code Generator. 
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3. Channel 3 

The logic table for Channel 3 is shown in Table 5. The RNS states are represented 

by the bits 34 33 32 31 30{ , , , , }i i i i i and are the inputs to the Channel 3 thermometer code 

generator. The desired thermometer code output is represented by the RSNS bits 

38 37 36 35 34 33 32 31 30{ , , , , , , , , }s s s s s s s s s . 

Table 5. Channel 3 ( 3 9m  ) Logic Table. 

 
RNS 
State 

i34 i33 i32 i31 i30 
RSNS 
State 

s38 s37 s36 s35 s34 s33 s32 s31 s30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 
2 0 0 0 1 0 2 0 0 0 0 0 0 0 1 1 
3 0 0 0 1 1 3 0 0 0 0 0 0 1 1 1 
4 0 0 1 0 0 4 0 0 0 0 0 1 1 1 1 
5 0 0 1 0 1 5 0 0 0 0 1 1 1 1 1 
6 0 0 1 1 0 6 0 0 0 1 1 1 1 1 1 
7 0 0 1 1 1 7 0 0 1 1 1 1 1 1 1 
8 0 1 0 0 0 8 0 1 1 1 1 1 1 1 1 
9 0 1 0 0 1 9 1 1 1 1 1 1 1 1 1 
10 0 1 0 1 0 8 0 1 1 1 1 1 1 1 1 
11 0 1 0 1 1 7 0 0 1 1 1 1 1 1 1 
12 0 1 1 0 0 6 0 0 0 1 1 1 1 1 1 
13 0 1 1 0 1 5 0 0 0 0 1 1 1 1 1 
14 0 1 1 1 0 4 0 0 0 0 0 1 1 1 1 
15 0 1 1 1 1 3 0 0 0 0 0 0 1 1 1 
16 1 0 0 0 0 2 0 0 0 0 0 0 0 1 1 
17 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 

 

Karnaugh maps are used to carry out logic minimization for Table 5, shown in 

Figure 50. 
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Figure 50.   Channel 3 Logic Minimization of Table 5 (After [4]). 
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The logic minimization in Figure 50 is used to produce the logic equations 

 

  
  

  
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    
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s i i i i i i i i i i
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  

2 3 1 0 3 2 1

36 3 2 1 0 3 2 3 2 1 0 3 2
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38 3 2 1 0 3 2 1 0

i i i i i i

s i i i i i i i i i i i i

s i i i i i i i i i i i i

s i i i i i i i i

  

  

    

 (44) 

 

These logic equations are used to implement the Channel 3 thermometer code 

generator in LabVIEW, shown in Figure 51. 
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Figure 51.   LabVIEW Channel 3 Thermometer Code Generator. 



 69

B. SIMULATION MODEL 

To test the RSNS-to-binary conversion, a simulation model was created with the 

thermometer code generators from the three channels enclosed within a case structure, 

shown in Figure 52. A ‘Master Clock’ global variable was created to determine the 

starting channel and to step through each of the three channels. Three ‘Channel Count’ 

global variables were used to set the channel start positions. 

 

Figure 52.   LabVIEW Simulation of RSNS-to-Binary Conversion. 
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C. SIMULATION RESULTS 

After running the simulation model in Figure 52, the thermometer code inputs and 

the RSNS-to-binary conversion output can be viewed on the respective scopes located in 

the LabVIEW Front Panel. 

1. Truncated Dynamic Range 

The thermometer code inputs and the simulated RSNS-to-binary output with no 

ambiguities within the truncated DR of 126 are shown in Figure 53. The RSNS position 

index h is from 733 to 857. 

 

Figure 53.   Simulated RSNS-to-Binary Output (Truncated DR Case). 
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2. Full Dynamic Range 

To achieve the full DR, the encoder circuit in Figure 44 was used in place of 

Figure 43 in the RSNS-to-binary conversion. The ambiguities in the simulated RSNS-to-

binary output within the full DR of 133 are shown in Figure 54. The RSNS position index 

h is from 733 to 865. 

 

 

Figure 54.   Simulated RSNS-to-Binary Output (Full DR Case with Ambiguities). 

3. LPS Priority Circuit 

The ambiguities in Figure 54 occur because the DR does not start with a Sub-

Channel 0 vector and end with a Sub-Channel 2 vector, as required in Figure 9. As a 

result, a start position with a Sub-Channel 0 vector 1( 732)h   has to be chosen outside 

the DR, during the DR compression process in Chapter II. 
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As the DR is not truncated to a length evenly divisible by six, there may be 

ambiguities where two LPS equations will be asserted at the same time – one of the 

boundary LPS equations (i.e. LPS0 or LPS22) and LPSX. If the full DR is to be 

maintained with no ambiguities, the boundary LPS equation should always be ignored in 

favor of the LPSX solution. 

This can be done by implementing an encoder with an addition of a LPS Priority 

circuit to check for such cases, and giving priority to the center 21 NAND gates over the 

first and last NAND gates. This is shown in Figure 55. 

 

Figure 55.   LabVIEW Schematics of Encoder with LPS Priority Circuit. 
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4. Full Dynamic Range with LPS Priority Circuit 

To achieve the full DR with no ambiguities, the encoder circuit in Figure 55 was 

used in place of Figures 43 and 44 in the RSNS-to-binary conversion. From Figure 56, it 

can be seen that there are no ambiguities in the simulated RSNS-to-binary output within 

the full DR of 133. The RSNS position index h is from 733 to 865. 

 

 
 

Figure 56.   Simulated RSNS-to-Binary Output (Full DR Case with No Ambiguities). 

Table 6. Comparison of Dynamic Range. 

 

Model Position Index h Dynamic Range Ambiguities? 

Truncated DR 733 – 857 126 No 

Full DR 733 – 865 133 Yes 

Full DR with LPS Priority 733 – 865 133 No 
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A comparison of the dynamic range achieved by the three different cases is shown 

in Table 6. The simulation proves that an eight-bit DR of 133 can be achieved for a three-

channel RSNS ADC with Moduli m1 = 7, m2 = 8 and m3 = 9. This is in agreement with 

the theoretical DR calculated from (5), and a one-bit improvement over that achieved in 

[4]. 

Simulation of the RSNS-to-binary conversion algorithm was successfully carried 

out to verify that it is working properly in this chapter. In the next chapter, the 

implementation of the comparator circuit and RSNS-to-binary conversion algorithm on a 

FPGA to allow the code to run at a higher sampling rate and frequency is elaborated. The 

FPGA is then integrated with the front-end photonics implementation to form the overall 

folding ADC architecture. 
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VI. ADC INTEGRATION 

The integration process to form an overall folding ADC system is documented in 

this chapter. The first section of this chapter contains an illustration of the 

implementation of the comparator circuit design and RSNS-to-binary conversion 

algorithm on an NI FPGA to form the DDS module. The integration of the DDS module 

with the front-end PES module in [5] is highlighted in the second section. 

A. DIGITAL DECODING SUB-SYSTEM 

 An overview of the DDS module from the bank of comparators to the FPGA is 

shown in Figure 57. An NI-9215 Analog Input Module is used to connect the three 

analog photo-detector inputs from the front-end PES module to the NI-9111 Chassis with 

an onboard XILINX Virtex-5 LX30 FPGA. The FPGA output is then sent to the NI-9012 

CompactRIO (cRIO) Real-Time Controller (RTC), and can be saved to a file using a 

LabVIEW Host Interface VI. 

 

Figure 57.   DDS Module Setup. 
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The comparator speed was a limiting factor in the ADC system speed as actual 

comparator ICs were used for sampling outside the FPGA in [3]. The key improvement 

made in the DDS module setup in Figure 57 is that the comparator circuits reside in the 

FPGA, allowing them to sample at a rate equal to the FPGA speed. 

Lastly, the comparator circuit and RSNS-to-binary conversion logics are run on 

the FPGA to guarantee a higher FPGA execution speed as opposed to running it on the 

RTC with a lower processing speed. 

B. COMPARATORS 

In the actual ADC architecture, comparators are used to convert the analog photo-

detector outputs into thermometer codes for each channel in place of thermometer code 

generators. The threshold values for the comparators can be expressed as [3]: 

 

2 ( 1)
( , ) *cos

2 2ii
RSNS RSNS

fs
kN

T k m
P P

V     
    

  

 

      (45) 

 

where k = 0, 1, …, mi – 1, Vfs = full-scale voltage for channel Moduli mi, N = number of 

channels, and PRSNS = period of RSNS channel = 2Nmi. 

The full-scale voltage is defined as the maximum amplitude of the modulated 

signal for each channel and determined in [5]. 

1. Channel 1 

Using (45) with 2.5fsV  (from [5]), we calculate the quantized threshold values 

for Channel 1 as: 

 

     1( , ) [0.0313,  0.2727,  0.7076, 1.2500, 1.7924, 2.2273, 2.4687].T k m   (46) 
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The implementation of the Channel 1 comparators in LabVIEW using the 

threshold voltages calculated in (46) is shown in Figure 58. 

 

Figure 58.   LabVIEW Schematics of Channel 1 Comparators. 

2. Channel 2 

Using (45) with 5.11fsV  (provided from [5]), we calculate the quantized 

threshold values for Channel 2 as 

 

2( , ) [0.0419,  0.4306,  1.1355, 2.0565, 3.0535, 3.9745, 4.6794, 5.0609].T k m    (47) 

 

The implementation of the Channel 2 comparators in LabVIEW using the 

threshold voltages calculated in (47) is shown in Figure 59. 
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Figure 59.   LabVIEW Schematics of Channel 2 Comparators. 

3. Channel 3 

Using (45) with 4.96fsV  (provided from [5]), we calculate the quantized 

threshold values for Channel 3 as 

 

3( , ) [0.0377,  0.3323,  0.8859, 1.6318, 2.4800, 3.3282, 4.0741, 4.6277, 4.9223].T k m   (48) 

 

The implementation of the Channel 3 comparators in LabVIEW using the 

threshold voltages calculated in (48) is shown in Figure 60. 
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Figure 60.   LabVIEW Schematics of Channel 3 Comparators. 

C. FPGA IMPLEMENTATION 

In order to implement the comparators and RSNS-to-binary conversion on the 

FPGA, a LabVIEW FPGA project was created as ‘FPGA789.lvproj’. An overview of this 

FPGA project is shown in Figure 61. 

The FPGA has a Dynamic Memory Allocation (DMA) First-In-First-Out (FIFO) 

buffer, which is used to transfer data from the FPGA to a host computer for this project. 

LabVIEW also requires the creation of an FPGA VI to run the necessary codes on the 

FPGA and a Host VI to communicate with the FPGA VI, which will be explained in the 

next two sections. 
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Figure 61.   LabVIEW FPGA Project Overview. 

1. FPGA VI 

In the FPGA VI, the three photo-detector inputs were read in using the NI-9215 

Analog Input Module, sampled using the comparator circuits, and processed using the 

RSNS-to-binary conversion algorithm. The RSNS-to-binary output was then stored in the 

DMA FIFO. The number of elements in the FIFO can be set in Figure 61 by double-

clicking on the FIFO icon and changing its properties. The LabVIEW schematics of the 

FPGA VI are shown in Figure 62. 

A point to note is that the thermometer code displays were removed from the 

Front Panel of the VI, as it slowed down the FPGA execution speed when it was required 

to display any data. 
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The truncated DR case was used for the RSNS-to-binary conversion for this 

integration as the interferometers used in [5] could not create enough folds of the 

modulated signals to exploit the whole DR. 

 

 

Figure 62.   LabVIEW Schematics of FPGA VI. 
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2. Host Interface VI 

In the Host VI, LabVIEW requires that a reference to the FPGA VI be opened 

before the Host VI can communicate with the FPGA VI.  Thereafter, a ‘FIFO Read’ 

action was invoked by the Host VI to read the DMA FIFO data in the FPGA VI. The data 

was then saved in a text file, using the ‘Write to Measurement File’ VI. The LabVIEW 

schematics of the Host VI are shown in Figure 63. 

 

Figure 63.   LabVIEW Schematics of Host VI. 

3. Results 

After compiling and running the FPGA and Host VIs, proper alignment of the 

modulated signals had to be carried out to ensure that the RSNS vectors were lined up 

correctly to achieve accurate decoding. The DDS outputs for a 1-kHz triangular and 1-

kHz sine input signal are shown in Figures 64 and 65, respectively. 
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Figure 64.   DDS Output for a 1-kHz Triangular Input Signal. 

 

 

Figure 65.   DDS Output for a 1-kHz Sine Input Signal. 
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It is seen from Figures 64 and 65 that the DDS module was able to decode the 

input signals with some signal clipping and uneven step sizes in the output waveforms. 

Implementations of the comparator circuit and RSNS-to-binary conversion 

algorithm on the FPGA to form the DDS module and DDS module integration with the 

front-end PES module to form the overall folding ADC architecture were carried out in 

this chapter. An analysis of the ADC performance characteristics is provided in the next 

chapter. 
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VII. ADC PERFORMANCE 

In this chapter, a number of important parameters that describe an ADC’s 

performance are presented. Differential and integral linearity errors are plotted for the 

ADC to analyze the linearity errors. The ADC dynamic range is determined using a full-

scale sinusoid and a Fourier spectrum analysis of the noise floor. Finally, the ADC 

dynamic performance is characterized by the Signal-to-Noise Ratio (SNR), SNR plus 

distortion (SINAD), Total Harmonic Distortion (THD) and the Effective Number of Bits 

(ENOB) parameters. 

A. LINEARITY ERRORS 

A comparison of the ADC 1-kHz sine input signal and the DDS output signal is 

shown in Figure 66, where it can be seen that the DDS output signal is able to follow the 

input signal, with some quantization and linearity errors. 

 

Figure 66.   Comparison of PES Input Signal and DDS Output Signal. 
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The characteristic transfer function of a 1-kHz triangular waveform is used to 

quantify the linearity errors. A plot of the ADC transfer function using a 1-kHz triangular 

input signal is shown in Figure 67. The quantization errors of the ADC transfer function 

in Figure 67 are shown in Figure 68. Quantization error is present as there is no one-to-

one correspondence between the input and output voltage. 

 

Figure 67.   Photonic ADC Transfer Function using a 1-kHz Triangular Input Signal. 

 

Figure 68.   Quantization Errors. 
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1. ADC Resolution 

The LSB size for this RSNS ADC is defined as:      

ˆ
fs

RSNS

V
LSB

M


     
 (49) 

where RSNSLSB  is the ADC resolution,  fsV  is the full-scale voltage and M̂  is the 

maximum system dynamic range. 

2. Differential Non-Linearity 

The Differential Non-Linearity (DNL) is expressed as [10]: 

 1k k kDNL V V LSB          (50) 

where 1 and k kV V   are two consecutive code transition points, and  1k kV V   is the step-

size. The DNL is the maximum deviation in the output step-size from the ideal value of 

one LSB. 

3. Integral Non-Linearity 

The Integral Non-Linearity (INL) is defined as [10]: 

   
1

j

j k j
k

INL DNL V jLSB


         (51) 

where  1
1

j

j k k
k

V V V 


   is the sum of the step-size from zero to the thj  transition point, 

and jLSB  is the ideal value at that transition point. The INL is the maximum deviation of 

the input/output characteristic from a straight line passed through its end points. A good 

ADC typically has linearity error ≤ 0.5 LSB. [10] 

The linearity errors (step-size, DNL and INL) of the quantized signal in Figure 67 

are shown in Figure 69. The step-size plot depicts the length of input voltage  
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corresponding to each quantization level as the input voltage increases. It shows that the 

maximum step-size is 2.7 LSB, which corresponds to the code transition points with a 

maximum DNL value of 1.7 LSB. 

A maximum INL value of 7.8 LSB is also obtained in Figure 69. The INL 

increases with a larger input voltage, indicating that the slope of the ADC transfer 

function is deviating from that of an ideal ADC transfer function at larger input voltages. 

 

Figure 69.   Linearity Parameters – Step-Size, DNL and INL. 
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B. NOISE FLOOR ANALYSIS 

The process for computing the frequency spectrum and analyzing the ADC noise 

floor is illustrated in Figure 70. 

 

Figure 70.   Process for Examining ADC Noise Floor (From [10]). 

This process involves passing a sinusoid input signal through the ADC. During 

quantization, a white noise process (quantization noise) k  is added to the analog signal. 

The ADC noise floor is analyzed by windowing 20 sets of 4,096 digitized samples using 

a Blackman-Harris window, with the window samples represented by kw . The 

Blackman-Harris window is chosen because of the low side-lobe levels it can achieve 

[10]. 

The average magnitude spectrum response is obtained by using the Discrete 

Fourier Transform (DFT) to transform the time-domain signals into the frequency 

domain and performing asynchronous point-by-point spectral averaging of the 20 sets of 

data. 

The purpose of conducting this noise floor analysis is to determine the dominant 

noise sources in the ADC system, explained in the next two sections. 

1. Quantization Noise 

The theoretical noise floor can be evaluated by examining the SNR and 

considering the presence of quantization noise only. By normalizing the square of the 
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magnitude of the spectral average with the fundamental signal, the equation to calculate 

the noise floor using a Blackman-Harris window is [10]: 

 2 10

3
10log 6.02   dB

4M
B

M
F n

E

 
  

 

    

(52) 

where n = Number of ADC Bits = log2 M̂  = log2 (41) = 5.26 bits, EB = Equivalent Noise 

Bandwidth of Blackman-Harris Window = 2.0, and M = Number of Samples = 4096. 

The theoretical noise floor is calculated as 2 64.13 dBMF   using (52). The procedure in 

Figure 70 is then used to obtain actual ADC noise floor measurements for comparison.

 For this analysis, a 1-kHz sinusoidal signal was sampled at 100-kHz. Twenty sets 

of 4,096 digitized signals were acquired asynchronously and windowed using a 

Blackman-Harris window. The MATLAB Fast Fourier Transform (FFT) function was 

used to compute the signal spectrum. The point-by-point spectral average of the twenty 

sets of data was then calculated. 

The spectral average of the 1-kHz sinusoidal signal is shown in Figure 71, using a 

Blackman-Harris window. 

 

 

Figure 71.   Spectral Average of a 1-kHz Sinusoidal Signal. 
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 Since the noise floor in Figure 71 is –64.5 dB, which is close to the theoretical 

noise floor of –64.13 dB, other additive noise sources (such as thermal noise) are less 

dominant in the system compared to quantization noise.  

2. Clock Jitter 

Two frequencies can be used to test if clock jitter is a dominant noise source, with 

the higher frequency being twice that of the first frequency [10]. A 2-kHz sinusoidal 

signal was sampled to compare its noise floor with that obtained for the 1-kHz sinusoidal 

signal in Figure 71. The same process in Figure 70 was adhered to in calculating the 

magnitude square spectrum of both signals. 

The spectral average of the 2-kHz sinusoidal signal with a noise floor of –59.5 

dB, using a Blackman-Harris window, is shown in Figure 72. Since the difference 

between both noise floor levels is 5 dB (less than 6 dB), clock jitter is not the dominant 

noise source [10]. This is expected as clock jitter is not expected to be significant at these 

relatively low frequencies. 

 

Figure 72.   Spectral Average of a 2-kHz Sinusoidal Signal. 
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C. DYNAMIC PERFORMANCE ANALYSIS 

Lastly, the ADC performance is characterized using the following dynamic 

performance parameters: SNR, THD, SINAD and ENOB. Two different frequencies (1-

kHz and 2-kHz) were used for comparison. 

1. Signal-to-Noise Ratio 

The ideal SNR equation assumes only quantization noise and is expressed as [10]: 

                                ( ) 6.02 1.76SNR dB n 

    

  (53) 

2 2
ˆwhere  Number of ADC Bits log log (41) 5.36 bits.n M   

 
2. Total Harmonic Distortion 

 The THD measures the harmonics of the input signal that show up at integral 

multiples of the fundamental frequency, and is a measure of the ADC’s non-linearity. It is 

defined as [10]: 

     2 2
2 20 3 20( ) 20log 10 10 ...

nd rdHAR HARTHD dB         (54) 

For the purpose of this analysis, the input signal’s first five harmonics were measured in 

decibels and used in (54). 

3. SNR Plus Distortion 

The SINAD equation takes into account all of the noise (including harmonics) to 

give an indication of the useful ADC dynamic range, but excludes the DC component. It 

is expressed as [10]: 

  ( ) 10 10( ) 20log 10 10 .SNR THDSINAD dB             (55) 

4. Effective Number of Bits 

The ENOB is a measure of the usable ADC dynamic range, which is reduced due 

to noise. It is defined as [10]: 
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full scale amplitude
1.76 20log

actual input amplitude
.

6.02

SINAD

ENOB

 
   

       (56) 

5. Summary of ADC Dynamic Performance Parameters 

A summary of the calculated parameter values, using (53) to (56) is shown in 

Table 7. 

Table 7. ADC Dynamic Performance Parameters. 

 

Frequency Ideal SNR (dB) SINAD (dB) THD (dB) ENOB (Bits) 

1 kHz 34.22 34.21 –61.68 5.39 

2 kHz 34.22 34.21 –61.01 5.39 

 
 

From Table 7, it is observed that the THD for the 2-kHz signal is 0.67 dB higher 

than that for the 1-kHz signal. The SINAD and ENOB values are similar for both 

frequencies, indicating that there was insignificant signal distortion when the frequency is 

increased from 1-kHz to 2-kHz. 

An enabler to achieving this is the design of comparator circuits in the FPGA, 

which has significantly reduced the distortion caused by sampling errors, as compared to 

using actual comparator ICs. 

D. SUMMARY 

 In this chapter, the ADC performance was described in three ways.  First, the 

ADC transfer function was examined for linearity errors. Second, the noise floor was 

analyzed to determine the main sources of noise in the system. Lastly, the dynamic 

performance parameters of the ADC system were characterized. Key conclusions and 

recommendations for future research will be provided in the next chapter. 
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VIII. CONCLUSION 

The key conclusions obtained from this project and recommendations for future 

research are provided in this chapter. 

A. KEY CONCLUSIONS 

The goal of this thesis was to conduct hardware and software implementation of 

the DDS module of the folding ADC architecture (for Moduli 7, 8, 9) from the bank of 

comparators to the RSNS-to-binary conversion within the FPGA as well as integration 

with the front-end PES module of this ADC design. This was accomplished via several 

milestones described below. 

Firstly, the RSNS dynamic range computation algorithm in [6] and [7] was 

verified to be correct, proving that an eight-bit DR of 133 can be achieved theoretically 

for a three-channel RSNS ADC with Moduli m1 = 7, m2 = 8 and m3 = 9. 

Secondly, the RSNS-to-binary algorithm was implemented in LabVIEW and 

shown to achieve the DR value of 133, which is in agreement with [6] and [7], and a one-

bit improvement over that achieved in [4]. Design of thermometer code generator circuits 

and simulation of this algorithm were carried out to verify that it is working properly 

before connecting to actual signals. 

Thirdly, the comparator circuits and RSNS-to-binary conversion algorithm were 

implemented on the FPGA, allowing the ADC to achieve a higher sampling frequency. 

Lastly, the DDS module was integrated with the front-end PES module in [5] to 

form a folding ADC system and characterization of the ADC performance was carried 

out. Analysis of the results attributed the dominant noise source in the ADC system to 

quantization noise, with the ADC remaining resilient to errors caused by other additive 

noise sources and comparator sampling. 
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This electro-optic RSNS ADC system has been demonstrated to work and 

produces a seven-bit output with relatively simple hardware and software. Due to the 

reduced number of hardware and software components and the large bandwidth of the 

photonics components, the energy and size savings, as well as increase in speed, make 

this folding ADC design appealing for defense applications, such as unmanned systems, 

direction-finding antenna architectures and electronic warfare system-on-a-chip 

applications. 

B. RECOMMENDATIONS FOR FUTURE RESEARCH 

 While this thesis is concerned with optimizing the DDS module implementation 

of the folding ADC system, various system trade-offs had to be made for integration 

purposes. Further upgrades and research can be carried out in various aspects of the 

system, detailed below. 

1. Bandwidth Upgrade 

 The bandwidth of this ADC system is currently limited by the NI-9215 Analog 

Input Module’s data rate of 100 kS/s. The highest frequency it can sample is 50 kHz, 

based on the Nyquist criteria. There are several wider-bandwidth NI modules available to 

replace this, such as the NI-5761 Digitizer Adapter Module, which has a data rate of 250 

MS/s and can sample frequencies up to 125 MHz [11]. The only drawback is that choices 

of wide-bandwidth modules are limited due to lack of commercial development and 

require impedance-matching for maximum power transfer. 

2.  FPGA Upgrade 

The speed of this ADC system is currently limited by the XILINX Virtex-5 LX-

30 FPGA on the NI-9111 Chassis. There are several higher-capacity NI FPGA modules 

available to replace this, such as the FlexRIO PXIe-7965R module, which has a XILINX 

Virtex-5 SX-95T FPGA with a clock speed of 550 MHz and the ability to handle single-

ended Input/Output (I/O) up to 800 Mbps [12]. This module did not arrive in time for the 

project due to procurement delay, but can be easily substituted when it is available. 
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There are other high-speed FPGAs (up to 1 GHz) that could not be used as they 

do not interface with NI LabVIEW. Nevertheless, it is envisaged that an Application-

Specific Integrated Circuit (ASIC) can be developed for testing once the FPGA circuit 

design has been fixed. This will remove the constraint of having to rely only on the NI 

programming environment. 

The envisaged DDS setup, after incorporating the component upgrades, is 

illustrated in Figure 73. 

 
 

Figure 73.   Upgrades to DDS Setup. 

3. Higher-Moduli Configurations 

The modular structure of the RSNS-to-binary converter allows the ADC system to 

be easily scalable to higher-moduli configurations or configurations with more than three 

channels. This will increase the ADC resolution and enable the ADC system to achieve a 

dynamic range that is better than the current eight-bit DR of 133. 
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APPENDIX. GENERALIZED CHINESE REMAINDER 
THEOREM PROCEDURE TO SOLVE FOR COA SHIFTS 

 

The COA shift 1sh   is the least positive solution to the following sets of 

congruence equations:

 

1
1

1
1

1
1

1
0 (mod  7)    1 (mod  21)

3
1

0 (mod  8)    1 (mod  24)
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2
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s
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h
h

h
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h
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
  


  


   

   

(57) 

 

 Equation (57) cannot be solved directly using the standardized Chinese 

Remainder Theorem (CRT) as the three moduli are not Pair-Wise Relatively Prime 

(PRP). The generalized CRT procedure must be used. The first step is to break each 

equation into its constituent equations [10]: 
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 
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  

    

(58) 

 

 The second step is to group all constituent equations with the same moduli 

together, and solve for the remaining congruence equations using the standardized CRT 

method:  

1

1

1

1 (mod  7)

1 (mod  8)

2 (mod  3)

s

s

s

h

h

h



 

    

(59) 
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 The standardized CRT solution is: 

   
   

   

1
1

1 2 3

1 2 3

where 7 8 3 168

            Moduli 7 8 3

            Residue of Moduli 1 1 2

N

s i i
i i

i

i

i

M
h b a

m

M m

m i m m m

a i a a a




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   





 

(60) 

 

 The coefficients bi can be found via the following procedure: 

 

   

    

1 1
1

168
Find : , ,7 24,7

7

                                                            24 1 7 0 24

24
                                                            24 0 7 1 7                 

7

M
b m

m

       
  

 

    

           

           

 

1

2 2
2

3 

24 24 7
24 1 0 7 0 1 24 1 7 3 3   2

7 7 3

7 7
24 0 1 7 1 3 24 2 7 7 1    2

3 3

168
Find : , ,8 21,8

8

  

b

M
b m

m



                                           
                                        

       
  

   

    

       

                                                          21 1 8 0 21

21
                                                            21 0 8 1 8                 2 

8

21 21
21 1 0 8 0 1

8 8

 

     

            
   

           

           

8
21 1 8 2 5     1

5

8 8 5
21 0 1 8 1 2 21 1 8 3 3      1

5 5 3

5 5 3
21 1 1 8 2 3 21 2 8 5 2   

3 3

                     
                                            
                                       

            2

1
2

3 3
21 1 2 8 3 5 21 3 8 8 1   3

2 2
b

    

                                         

 



 101

 

   

    

3 3
3

168
Find : , ,3 56,3

3

                                                            56 1 3 0 56

56
                                                            56 0 3 1 3                 

3

M
b m

m

       
  

 

    

           

            3

1 1 1 2 2 3 3
1 2 3

18 

56 56 3
56 1 0 3 0 1 56 1 3 18 2   1

3 3 2

3 3
56 0 1 3 1 18 56 1 3 19 1    1

2 2

mods

b

M M M
h b a b a b a

m m m



                                           
                                        

 
   
 

 

            1 24 2 1 21 3 1 56 1 2 mod 168 1 mod 168s

M

h          

 

 

Similarly, the COA shift 2sh   is the least positive solution to the following sets of 

congruence equations: 

2
2

2
2

2
2

2
0 (mod  7)    2 (mod  21)

3
1

0 (mod  8)    1 (mod  24)
3

1
0 (mod  9)    1 (mod  27)

3

s
s

s
s

s
s

h
h

h
h

h
h


  


   


   

   

(61) 

 

 Equation (61) cannot be solved directly using the standardized CRT as the three 

moduli are not PRP. The generalized CRT procedure must be used. Again, the first step is 

to break each equation into its constituent equations [10]: 
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 The second step is to group all constituent equations with the same moduli 

together and solve for the remaining congruence equations using the standardized CRT 

method:  
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 The standardized CRT solution is: 
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 The coefficients bi are the same as for 1sh , as the moduli configuration is the same 

for both COA shifts: 
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